[Résultat de convergence quasi-optimal en mécanique de la rupture avec XFEM]
Le but de cette Note est de donner un résultat de convergence pour une variante de la méthode XFEM (eXtended Finite Element Method) sur un domaine fissuré en utilisant une fonction cut-off pour localiser l'enrichissement par les fonctions singulières. La difficulté est causée par la discontinuité du champ de déplacement à travers la fissure, mais on montre une convergence quasi-optimale malgré la présence d'éléments coupés par la fissure. Le résultat de convergence globale linéaire est obtenu en utilisant une méthode d'éléments finis affines enrichis.
The aim of this Note is to give a convergence result for a variant of the eXtended Finite Element Method (XFEM) on cracked domains using a cut-off function to localize the singular enrichment area. The difficulty is caused by the discontinuity of the displacement field across the crack, but we prove that a quasi-optimal convergence rate holds in spite of the presence of elements cut by the crack. The global linear convergence rate is obtained by using an enriched linear finite element method.
Accepté le :
Publié le :
Elie Chahine 1 ; Patrick Laborde 2 ; Yves Renard 1
@article{CRMATH_2006__342_7_527_0, author = {Elie Chahine and Patrick Laborde and Yves Renard}, title = {A quasi-optimal convergence result for fracture mechanics with {XFEM}}, journal = {Comptes Rendus. Math\'ematique}, pages = {527--532}, publisher = {Elsevier}, volume = {342}, number = {7}, year = {2006}, doi = {10.1016/j.crma.2006.02.002}, language = {en}, }
TY - JOUR AU - Elie Chahine AU - Patrick Laborde AU - Yves Renard TI - A quasi-optimal convergence result for fracture mechanics with XFEM JO - Comptes Rendus. Mathématique PY - 2006 SP - 527 EP - 532 VL - 342 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2006.02.002 LA - en ID - CRMATH_2006__342_7_527_0 ER -
Elie Chahine; Patrick Laborde; Yves Renard. A quasi-optimal convergence result for fracture mechanics with XFEM. Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 527-532. doi : 10.1016/j.crma.2006.02.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.002/
[1] Sobolev Spaces, Academic Press, 1975
[2] The Finite Element Method For Elliptic Problems, North-Holland Publishing Company, 1979
[3] Une nouvelle méthode de calcul de la singularité pour un problème elliptique posé sur un ouvert avec fente, C. R. Acad. Sci. Paris, Volume 293 (1981), pp. 343-346
[4] Eléments finis: théorie, applications, mise en œuvre, Springer, 2001
[5] Non-planar 3D crack growth by the extended finite element and level sets, Part II: Level set update, Int. J. Numer. Methods Engrg., Volume 53 (2002) no. 11, pp. 2569-2586
[6] Singularities in Boundary Value Problems, Masson, 1992
[7] A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput. Methods Appl. Mech. Engrg., Volume 193 (2004), pp. 3523-3540
[8] P. Laborde, Y. Renard, J. Pommier, M. Salaün, High order extended finite element method for cracked domains, Int. J. Numer. Methods Engrg., in press
[9] Mécanique de la Rupture Fragile et Ductile, Hermes, Lavoisier, 2003
[10] Mechanics of Solid Materials, Cambridge University Press, 1994
[11] A finite element method for crack growth without remeshing, Int. J. Numer. Methods Engrg., Volume 46 (1999), pp. 131-150
[12] An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, 1973
[13] An extended finite element method with higher-order elements for curved cracks, Comput. Mech., Volume 31 (2003), pp. 38-48
Cité par Sources :
Commentaires - Politique