Comptes Rendus
XFEM simulation of a quenched cracked glass plate with moving convective boundaries
Comptes Rendus. Mécanique, Volume 344 (2016) no. 2, pp. 78-94.

A moving quenched soda-lime glass plate with an initial edge crack is modeled, applying the eXtended finite-element method (XFEM) in order to investigate the stress field components and Von Mises stress around the crack. The convective heat with moving boundaries is considered in thermal formulation. The Crank–Nicolson time integration scheme is reformed and adjusted with a view to accurately solving the system of transient heat conduction matrix equations. In order to simulate the whole stages of the problem formulation, MATLAB XFEM (MXFEM) codes are written and employed. The stress distribution contours are plotted in detail and the stress fields around the crack tip are compared quantitatively. The variations of stress intensity factors (SIFs) during crack propagation are obtained through the calculation of the domain form of the interaction integral. In order to verify the procedure and display the ability of the developed formulation, the results are compared with experimental outputs from the literature.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2015.09.007
Mots clés : XFEM, Quenched cracked glass plate, Moving convective boundaries, Transient heat conduction, Crank–Nicolson method

Diyako Ghaffari 1 ; Samrand Rash Ahmadi 1 ; Farzin Shabani 1

1 Faculty of Engineering, Mechanical Engineering Department, Urmia University, Urmia, Iran
@article{CRMECA_2016__344_2_78_0,
     author = {Diyako Ghaffari and Samrand Rash Ahmadi and Farzin Shabani},
     title = {XFEM simulation of a quenched cracked glass plate with moving convective boundaries},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {78--94},
     publisher = {Elsevier},
     volume = {344},
     number = {2},
     year = {2016},
     doi = {10.1016/j.crme.2015.09.007},
     language = {en},
}
TY  - JOUR
AU  - Diyako Ghaffari
AU  - Samrand Rash Ahmadi
AU  - Farzin Shabani
TI  - XFEM simulation of a quenched cracked glass plate with moving convective boundaries
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 78
EP  - 94
VL  - 344
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2015.09.007
LA  - en
ID  - CRMECA_2016__344_2_78_0
ER  - 
%0 Journal Article
%A Diyako Ghaffari
%A Samrand Rash Ahmadi
%A Farzin Shabani
%T XFEM simulation of a quenched cracked glass plate with moving convective boundaries
%J Comptes Rendus. Mécanique
%D 2016
%P 78-94
%V 344
%N 2
%I Elsevier
%R 10.1016/j.crme.2015.09.007
%G en
%F CRMECA_2016__344_2_78_0
Diyako Ghaffari; Samrand Rash Ahmadi; Farzin Shabani. XFEM simulation of a quenched cracked glass plate with moving convective boundaries. Comptes Rendus. Mécanique, Volume 344 (2016) no. 2, pp. 78-94. doi : 10.1016/j.crme.2015.09.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.09.007/

[1] T. Pin; T.H.H. Pian On the convergence of the finite-element method for problems with singularity, Int. J. Solids Struct., Volume 9 (1973), pp. 313-321 | DOI

[2] T. Belytschko; T. Black Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng., Volume 45 (1999), pp. 601-620

[3] C.A. Duarte; J.T. Oden (1995), pp. 5-95 (TICAM rep.)

[4] J.M. Melenk; I. Babuška The partition of unity finite-element method: basic theory and applications, Comput. Methods Appl. Mech. Eng., Volume 139 (1996), pp. 289-314

[5] E. Goli; H. Bayesteh; S. Mohammadi Mixed mode fracture analysis of adiabatic cracks in homogeneous and non-homogeneous materials in the framework of partition of unity and the path-independent interaction integral, Eng. Fract. Mech., Volume 131 (2014), pp. 100-127

[6] A. Yazid; N. Abdelkader; H. Abdelmadjid A state-of-the-art review of the X-FEM for computational fracture mechanics, Appl. Math. Model., Volume 33 (2009), pp. 4269-4282

[7] A. Zamani; M.R. Eslami Implementation of the extended finite-element method for dynamic thermoelastic fracture initiation, Int. J. Solids Struct., Volume 47 (2010), pp. 1392-1404

[8] M. Duflot The extended finite-element method in thermoelastic fracture mechanics, Int. J. Numer. Methods Eng., Volume 74 (2008), pp. 827-847

[9] K.Y. Lam; T.E. Tay; W.G. Yuan Stress intensity factors of cracks in finite plates subjected to thermal loads, Eng. Fract. Mech., Volume 43 (1992), pp. 641-650

[10] M.R. Ayatollahi; M.R.M. Aliha Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion, Int. J. Solids Struct., Volume 46 (2009), pp. 311-321

[11] Y. Hayakawa Numerical study of oscillatory crack propagation through a two-dimensional crystal, Phys. Rev. E, Volume 49 (1994)

[12] M. Marder Instability of a crack in a heated strip, Phys. Rev. E, Volume 49 (1994)

[13] S. Sasa; K. Sekimoto; H. Nakanishi Oscillatory instability of crack propagations in quasistatic fracture, Phys. Rev. E, Volume 50 (1994)

[14] H.-A. Bahr; A. Gerbatsch; U. Bahr; H.-J. Weiss Oscillatory instability in thermal cracking: a first-order phase-transition phenomenon, Phys. Rev. E, Volume 52 (1995), p. 240

[15] M. Adda-Bedia; Y. Pomeau Crack instabilities of a heated glass strip, Phys. Rev. E, Volume 52 (1995), pp. 4105-4113 | DOI

[16] B.D. Ferney; M.R. DeVary; K.J. Hsia; A. Needleman Oscillatory crack growth in glass, Scr. Mater., Volume 41 (1999), pp. 275-281

[17] Y. Pomeau Fundamental problems in brittle fracture: unstable cracks and delayed breaking, C. R. Mecanique, Volume 330 (2002), pp. 249-257 | DOI

[18] E. Bouchbinder; H.G.E. Hentschel; I. Procaccia Dynamical instabilities of quasistatic crack propagation under thermal stress, Phys. Rev. E, Volume 68 (2003)

[19] K. Sakaue; R. Yamada; M. Takashi A study on propagation patterns of thermally induced cracks in a brittle solid, Nippon Kikai Gakkai Ronbunshu A Hen (Trans. Jpn. Soc. Mech. Eng. Part A) (Japan), Volume 18 (2006), pp. 1697-1702

[20] K. Sakaue; M. Takashi Experimental investigation of crack path instabilities in a quenched plate, Proc. 2006 SEM Annu. Conf. Expo. Exp. Appl. Mech. Soc. Exp. Mech. Bethel, Pap., 2006

[21] A. Yuse; M. Sano Transition between crack patterns in quenched glass plates, Nature, Volume 362 (1993), pp. 329-331

[22] O. Ronsin; B. Perrin Dynamics of quasistatic directional crack growth, Phys. Rev. E, Volume 58 (1998), p. 7878

[23] B. Yang; K. Ravi-Chandar Crack path instabilities in a quenched glass plate, J. Mech. Phys. Solids, Volume 49 (2001), pp. 91-130

[24] S. Yoneyama; H. Kikuta; K. Moriwaki Simultaneous observation of phase-stepped photoelastic fringes using a pixelated microretarder array, Opt. Eng., Volume 45 (2006), p. 83604

[25] S. Yoneyama; K. Sakaue; H. Kikuta; M. Takashi Instantaneous phase-stepping photoelasticity for the study of crack growth behaviour in a quenched thin glass plate, Meas. Sci. Technol., Volume 17 (2006), p. 3309

[26] K. Sakaue; S. Yoneyama; H. Kikuta; M. Takashi Evaluating crack tip stress field in a thin glass plate under thermal load, Eng. Fract. Mech., Volume 75 (2008), pp. 1015-1026

[27] S. Yoneyama; K. Sakaue; H. Kikuta; M. Takashi Observation of stress field around an oscillating crack tip in a quenched thin glass plate, Exp. Mech., Volume 48 (2008), pp. 367-374

[28] K. Sakaue; S. Yoneyama; M. Takashi Study on crack propagation behavior in a quenched glass plate, Eng. Fract. Mech., Volume 76 (2009), pp. 2011-2024

[29] S. Yoneyama; K. Sakaue Experimental–numerical hybrid stress analysis for a curving crack in a thin glass plate under thermal load, Eng. Fract. Mech., Volume 131 (2014), pp. 514-524

[30] I. Babuška; J.M. Melenk The partition of unity method, Int. J. Numer. Methods Eng., Volume 40 (1997), pp. 727-758 | DOI

[31] M. Pais; N.-H. Kim; T. Davis Reanalysis of the extended finite-element method for crack initiation and propagation, Proc. AIAA Struct. Struct. Dyn. Mater. Conf., 2010

[32] N. Moës; J. Dolbow; T. Belytschko A finite-element method for crack growth without remeshing, Int. J. Numer. Methods Eng., Volume 46 (1999), pp. 131-150

[33] S. Osher; J.A. Sethian Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., Volume 79 (1988), pp. 12-49

[34] S. Osher; R.P. Fedkiw Level set methods: an overview and some recent results, J. Comput. Phys., Volume 169 (2001), pp. 463-502

[35] M. Stolarska; D.L. Chopp; N. Moës; T. Belytschko Modelling crack growth by level sets in the extended finite-element method, Int. J. Numer. Methods Eng., Volume 51 (2001), pp. 943-960 | DOI

[36] T. Belytschko; N. Moës; S. Usui; C. Parimi Arbitrary discontinuities in finite elements, Int. J. Numer. Methods Eng., Volume 50 (2001), pp. 993-1013

[37] M. Fleming; Y.A. Chu; B. Moran; T. Belytschko; Y.Y. Lu; L. Gu Enriched element-free Galerkin methods for crack tip fields, Int. J. Numer. Methods Eng., Volume 40 (1997), pp. 1483-1504

[38] A.F. Bower Applied Mechanics of Solids, CRC Press, 2009

[39] A. Ahmed; F. Auricchio Extended finite-element method (XFEM)-modeling arbitrary discontinuities and failure analysis, 2009 (Res. degree thesis)

[40] R.J. Astley Finite Elements in Solids and Structures. An Introduction, Chapman & Hall (Springer), 1992

[41] H.M. Westergaard Bearing pressures and cracks, J. Appl. Mech., Volume 61 (1939), p. A49-A53

[42] M.L. Williams On the stress distribution at the base of a stationary crack, J. Appl. Mech., Volume 24 (1957), pp. 109-114 | DOI

[43] M. Pais Matlab extended finite element (MXFEM) code v1.2, 2011 www.matthewpais.com

[44] M.N. Ozisik Heat Conduction, John Wiley & Sons, 1993

[45] D.V. Hutton; J. Wu Fundamentals of Finite Element Analysis, McGraw-Hill, New York, 2004

[46] R.B. Hetnarski Encyclopedia of Thermal Stresses, Springer, 2014

[47] S. Moaveni Finite Element Analysis: Theory and Application with ANSYS, Pearson Education, India, 2003

[48] J.G. Charney; R. Fjörtoft; J. Von Neumann Numerical integration of the barotropic vorticity equation, Tellus, Volume 2 (1950) no. 4, pp. 237-254

Cité par Sources :

Commentaires - Politique