[Résolutions symplectiques pour les orbites nilpotentes (III)]
Nous montrons que deux résolutions symplectiques d'une adhérence d'orbite nilpotente dans une algèbre de Lie simple complexe classique sont réliées l'une à l'autre par des flops de Mukai en codimension 2.
We prove that two symplectic resolutions of a nilpotent orbit closures in a simple complex Lie algebra of classical type are related by Mukai flops in codimension 2.
Accepté le :
Publié le :
Baohua Fu 1
@article{CRMATH_2006__342_8_585_0, author = {Baohua Fu}, title = {Symplectic resolutions for nilpotent orbits {(III)}}, journal = {Comptes Rendus. Math\'ematique}, pages = {585--588}, publisher = {Elsevier}, volume = {342}, number = {8}, year = {2006}, doi = {10.1016/j.crma.2006.02.004}, language = {en}, }
Baohua Fu. Symplectic resolutions for nilpotent orbits (III). Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 585-588. doi : 10.1016/j.crma.2006.02.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.004/
[1] Symplectic singularities, Invent. Math., Volume 139 (2000), pp. 541-549
[2] HyperKähler manifolds and birational transformations in dimension 4, Vector Bundles and Representation Theory, Columbia, MO, 2002, Contemp. Math., vol. 322, Amer. Math. Soc., Providence, RI, 2003, pp. 141-149
[3] Characterizations of projective space and applications to complex symplectic manifolds, Higher Dimensional Birational Geometry, Kyoto, 1997, Adv. Stud. Pure Math., vol. 35, Math. Soc. Japan, Tokyo, 2002, pp. 1-88
[4] Symplectic resolutions for nilpotent orbits, Invent. Math., Volume 151 (2003), pp. 167-186
[5] Mukai flops and deformations of symplectic resolutions (Math. Z., in press) | arXiv
[6] Polarization in the classical groups, Math. Z., Volume 160 (1978), pp. 217-234
[7] HyperKähler manifolds and birational transformations, Adv. Theor. Math. Phys., Volume 6 (2002) no. 3, pp. 557-574
[8] Birational geometry of symplectic resolutions of nilpotent orbits | arXiv
[9] Small contractions of symplectic 4-folds, Duke Math. J., Volume 120 (2003) no. 1, pp. 65-95
Cité par Sources :
Commentaires - Politique