In this Note, a weighted identity for partial differential operators of second order is established. As its applications, one may deduce all the known controllability/observability results for the parabolic, hyperbolic, Schrödinger and plate equations that are derived via Carleman estimate. Meanwhile, a new controllability/observability result is presented for the parabolic equations with a complex principal part.
Dans cette Note, nous établissons une identité avec poids pour des opérateurs aux dérivées partielles du second ordre. De cette égalité, découlent tous les resultats connus de contrôlabilité/observabilité pour les équations paraboliques, les équations hyperboliques, l'équation de Schrödinger et celle des plaques, tous obtenus à partir des inégalités de Carleman. Par ailleurs, un nouveau résultat de contrôlabilité/observabilité est obtenu pour les équations de type paraboliques avec des coefficients à valeur complexe.
Accepted:
Published online:
Xiaoyu Fu 1
@article{CRMATH_2006__342_8_579_0, author = {Xiaoyu Fu}, title = {A weighted identity for partial differential operators of second order and its applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {579--584}, publisher = {Elsevier}, volume = {342}, number = {8}, year = {2006}, doi = {10.1016/j.crma.2006.02.023}, language = {en}, }
Xiaoyu Fu. A weighted identity for partial differential operators of second order and its applications. Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 579-584. doi : 10.1016/j.crma.2006.02.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.023/
[1] Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, Volume 18 (2002), pp. 1537-1554
[2] On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., Volume 41 (2002), pp. 798-819
[3] X. Fu, Null controllability for the parabolic equations with a complex principal part, Preprint
[4] X. Fu, J. Yong, X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations, submitted for publication
[5] Controllability of Evolution Equations, Lecture Notes Ser., vol. 34, Research Institute of Mathematics, Seoul National University, Seoul, Korea, 1994
[6] Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via point-wise Carleman estimates, Part I: -estimates, J. Inverse Ill-Posed Probl., Volume 12 (2004), pp. 43-123
[7] Carleman inequality for the backward stochastic parabolic equations with general coefficients, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 775-780
[8] Exact controllability of the semilinear plate equations, Asymptotic Anal., Volume 27 (2001), pp. 95-125
[9] Some problems and results on the controllability of partial differential equations, Progr. in Math., vol. 169, Birkhäuser, Basel, Switzerland, 1998, pp. 276-311
[10] Controllability of partial differential equations and its semi-discrete approximation, Discrete Contin. Dynam. Systems, Volume 8 (2002), pp. 469-513
Cited by Sources:
Comments - Policy