We state and discuss a number of fundamental asymptotic properties of solutions to one-dimensional advection–diffusion equations of the form , , , assuming initial values for some .
Nous établissons plusieurs propriétés asymptotiques fondamentales des solutions des équations d'avection–diffusion du type , , , aux données initiales dans l'espace de Lebesgue , où .
Accepted:
Published online:
Pablo Braz e Silva 1; Paulo R. Zingano 2
@article{CRMATH_2006__342_7_465_0, author = {Pablo Braz e Silva and Paulo R. Zingano}, title = {Some asymptotic properties for solutions of one-dimensional advection{\textendash}diffusion equations with {Cauchy} data in $ {L}^{p}(\mathbb{R})$}, journal = {Comptes Rendus. Math\'ematique}, pages = {465--467}, publisher = {Elsevier}, volume = {342}, number = {7}, year = {2006}, doi = {10.1016/j.crma.2006.02.006}, language = {en}, }
TY - JOUR AU - Pablo Braz e Silva AU - Paulo R. Zingano TI - Some asymptotic properties for solutions of one-dimensional advection–diffusion equations with Cauchy data in $ {L}^{p}(\mathbb{R})$ JO - Comptes Rendus. Mathématique PY - 2006 SP - 465 EP - 467 VL - 342 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2006.02.006 LA - en ID - CRMATH_2006__342_7_465_0 ER -
%0 Journal Article %A Pablo Braz e Silva %A Paulo R. Zingano %T Some asymptotic properties for solutions of one-dimensional advection–diffusion equations with Cauchy data in $ {L}^{p}(\mathbb{R})$ %J Comptes Rendus. Mathématique %D 2006 %P 465-467 %V 342 %N 7 %I Elsevier %R 10.1016/j.crma.2006.02.006 %G en %F CRMATH_2006__342_7_465_0
Pablo Braz e Silva; Paulo R. Zingano. Some asymptotic properties for solutions of one-dimensional advection–diffusion equations with Cauchy data in $ {L}^{p}(\mathbb{R})$. Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 465-467. doi : 10.1016/j.crma.2006.02.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.006/
[1] Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 890-896
[2] Second order linear equations of parabolic type, Russian Math. Surveys, Volume 17 (1962), pp. 1-143
[3] Quasilinear parabolic equations and first-order quasilinear conservation laws with bad Cauchy data, J. Math. Anal. Appl., Volume 35 (1971), pp. 563-576
[4] Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968
[5] Nonlinear stability under large disturbances, J. Comput. Appl. Math., Volume 103 (1999), pp. 207-219
[6] Some asymptotic limits for solutions of Burgers equation (arXiv:) | arXiv
Cited by Sources:
Comments - Policy