Comptes Rendus
Partial Differential Equations
Convexity of solutions of parabolic equations
[Convexité des solutions d'équations paraboliques]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 915-921.

Nous établissons dans cette note des conditions nécessaires et suffisantes pour la propagation de la convexité des solutions d'équations paraboliques. Nous considérons aussi bien des équations linéaires que complètement non linéaires. Et nous mentionnons diverses variantes et extensions de ces résultats.

We establish here necessary and sufficient conditions for the propagation of convexity in parabolic equations. We consider as well linear equations and fully nonlinear ones. And we discuss several variants and extensions of these results.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.02.014

Pierre-Louis Lions 1, 2 ; Marek Musiela 3

1 Collège de France, 3, rue d'Ulm, 75005 Paris, France
2 Ceremade, UMR CNRS 7534, université Paris-Dauphine, place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France
3 FIRST, BNP PARIBAS, 10, Harewood Avenue, London NW1 6AA, UK
@article{CRMATH_2006__342_12_915_0,
     author = {Pierre-Louis Lions and Marek Musiela},
     title = {Convexity of solutions of parabolic equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {915--921},
     publisher = {Elsevier},
     volume = {342},
     number = {12},
     year = {2006},
     doi = {10.1016/j.crma.2006.02.014},
     language = {en},
}
TY  - JOUR
AU  - Pierre-Louis Lions
AU  - Marek Musiela
TI  - Convexity of solutions of parabolic equations
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 915
EP  - 921
VL  - 342
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2006.02.014
LA  - en
ID  - CRMATH_2006__342_12_915_0
ER  - 
%0 Journal Article
%A Pierre-Louis Lions
%A Marek Musiela
%T Convexity of solutions of parabolic equations
%J Comptes Rendus. Mathématique
%D 2006
%P 915-921
%V 342
%N 12
%I Elsevier
%R 10.1016/j.crma.2006.02.014
%G en
%F CRMATH_2006__342_12_915_0
Pierre-Louis Lions; Marek Musiela. Convexity of solutions of parabolic equations. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 915-921. doi : 10.1016/j.crma.2006.02.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.014/

[1] O. Alvarez; J.-M. Lasry; P.-L. Lions Convex viscosity solutions and state constraints, J. Math. Pures Appl., Volume 76 (1997), pp. 265-288

[2] M.G. Grandall; H. Ishii; P.-L. Lions User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., Volume 27 (1992), pp. 1-67

[3] Y. Giga; S. Goto; H. Ishii; M.H. Sato Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J., Volume 40 (1991), pp. 443-470

[4] H. Ishii; P.-L. Lions Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations, Volume 83 (1990), pp. 26-78

[5] B. Kawohl Rearrangement and Convexity of Level Sets in PDE, Lecture Notes in Math., vol. 1150, Springer, New York, 1985

[6] A.U. Kennington Power concavity and boundary value problems, Indiana Univ. Math. J., Volume 34 (1985), pp. 687-704

[7] N.J. Korevaar Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., Volume 32 (1983), pp. 603-614

[8] M. Romano; N. Touzi Contingent claim and market completences in a stochastic volatility model, Math. Finance, Volume 7 (1997), pp. 399-412

Cité par Sources :

Commentaires - Politique