We prove that a lower bound for the angle of the sector of analyticity of not necessarily symmetric submarkovian semigroups generated by second order elliptic operators in divergence form or by Ornstein–Uhlenbeck in is given by . If the semigroup is symmetric then we recover known results. In general, this lower bound is optimal.
Nous prouvons qu'une borne inférieure de l'angle du secteur d'analyticité de semi-groupes sous-markoviens non nécessairement symétriques qui sont engendrés par des opérateurs elliptiques sous forme divergencielle ou par des opérateurs de Ornstein–Uhlenbeck dans est donnée par la formule . Si le semi-groupe est symétrique on retrouve alors des résultats connus. En général, cette borne inférieure est optimale.
Accepted:
Published online:
Ralph Chill 1; Eva Fašangová 2; Giorgio Metafune 3; Diego Pallara 3
@article{CRMATH_2006__342_12_909_0, author = {Ralph Chill and Eva Fa\v{s}angov\'a and Giorgio Metafune and Diego Pallara}, title = {The sector of analyticity of nonsymmetric submarkovian semigroups generated by elliptic operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {909--914}, publisher = {Elsevier}, volume = {342}, number = {12}, year = {2006}, doi = {10.1016/j.crma.2006.04.003}, language = {en}, }
TY - JOUR AU - Ralph Chill AU - Eva Fašangová AU - Giorgio Metafune AU - Diego Pallara TI - The sector of analyticity of nonsymmetric submarkovian semigroups generated by elliptic operators JO - Comptes Rendus. Mathématique PY - 2006 SP - 909 EP - 914 VL - 342 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2006.04.003 LA - en ID - CRMATH_2006__342_12_909_0 ER -
%0 Journal Article %A Ralph Chill %A Eva Fašangová %A Giorgio Metafune %A Diego Pallara %T The sector of analyticity of nonsymmetric submarkovian semigroups generated by elliptic operators %J Comptes Rendus. Mathématique %D 2006 %P 909-914 %V 342 %N 12 %I Elsevier %R 10.1016/j.crma.2006.04.003 %G en %F CRMATH_2006__342_12_909_0
Ralph Chill; Eva Fašangová; Giorgio Metafune; Diego Pallara. The sector of analyticity of nonsymmetric submarkovian semigroups generated by elliptic operators. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 909-914. doi : 10.1016/j.crma.2006.04.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.003/
[1] Sur l'interpolation complexe des semigroupes de diffusion, Séminaire de Probabilités, XXIII, Lecture Notes in Math., vol. 1372, Springer-Verlag, Berlin, 1989, pp. 1-20
[2] The sector of analyticity of the Ornstein–Uhlenbeck semigroup in spaces with respect to invariant measure, J. London Math. Soc., Volume 71 (2005), pp. 703-722
[3] On the angle of dissipativity of ordinary and partial differential operators (G.I. Zapata, ed.), Functional Analysis, Holomorphy and Approximation Theory. II, North-Holland Math. Stud., vol. 86, North-Holland, Amsterdam, 1984, pp. 85-111
[4] P.C. Kunstmann, -spectral properties of the Neumann Laplacian on horns, comets and stars, Math. Z. 242, 183–201
[5] Analyticity of submarkovian semigroups, Proc. Amer. Math. Soc., Volume 123 (1995), pp. 1097-1104
[6] Some problems on Markov semigroups, Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras, Math. Top., vol. 11, Akademie Verlag, Berlin, 1996, pp. 163-217
[7] Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Universitext, Springer-Verlag, Berlin, 1992
[8] Sectorialness of second order elliptic operators in divergence form, Proc. Amer. Math. Soc., Volume 113 (1991), pp. 701-706
[9] Analysis of Heat Equations on Domains, London Math. Soc. Monographs, vol. 30, Princeton University Press, Princeton, 2004
[10] Topics in Harmonic Analysis Related to the Littlewood–Paley Theory, Ann. Math. Stud., vol. 63, Princeton Univ. Press, Princeton, 1970
[11] The sector of holomorphy for symmetric sub-Markovian semigroups, Trier, 1994, de Gruyter, Berlin (1996), pp. 449-453
Cited by Sources:
Comments - Policy