[Le secteur d'analyticité de semi-groupes sous-markoviens non-symétriques engendrés par des opérateurs elliptiques]
We prove that a lower bound for the angle
Nous prouvons qu'une borne inférieure de l'angle
Accepté le :
Publié le :
Ralph Chill 1 ; Eva Fašangová 2 ; Giorgio Metafune 3 ; Diego Pallara 3
@article{CRMATH_2006__342_12_909_0, author = {Ralph Chill and Eva Fa\v{s}angov\'a and Giorgio Metafune and Diego Pallara}, title = {The sector of analyticity of nonsymmetric submarkovian semigroups generated by elliptic operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {909--914}, publisher = {Elsevier}, volume = {342}, number = {12}, year = {2006}, doi = {10.1016/j.crma.2006.04.003}, language = {en}, }
TY - JOUR AU - Ralph Chill AU - Eva Fašangová AU - Giorgio Metafune AU - Diego Pallara TI - The sector of analyticity of nonsymmetric submarkovian semigroups generated by elliptic operators JO - Comptes Rendus. Mathématique PY - 2006 SP - 909 EP - 914 VL - 342 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2006.04.003 LA - en ID - CRMATH_2006__342_12_909_0 ER -
%0 Journal Article %A Ralph Chill %A Eva Fašangová %A Giorgio Metafune %A Diego Pallara %T The sector of analyticity of nonsymmetric submarkovian semigroups generated by elliptic operators %J Comptes Rendus. Mathématique %D 2006 %P 909-914 %V 342 %N 12 %I Elsevier %R 10.1016/j.crma.2006.04.003 %G en %F CRMATH_2006__342_12_909_0
Ralph Chill; Eva Fašangová; Giorgio Metafune; Diego Pallara. The sector of analyticity of nonsymmetric submarkovian semigroups generated by elliptic operators. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 909-914. doi : 10.1016/j.crma.2006.04.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.003/
[1] Sur l'interpolation complexe des semigroupes de diffusion, Séminaire de Probabilités, XXIII, Lecture Notes in Math., vol. 1372, Springer-Verlag, Berlin, 1989, pp. 1-20
[2] The sector of analyticity of the Ornstein–Uhlenbeck semigroup in
[3] On the angle of dissipativity of ordinary and partial differential operators (G.I. Zapata, ed.), Functional Analysis, Holomorphy and Approximation Theory. II, North-Holland Math. Stud., vol. 86, North-Holland, Amsterdam, 1984, pp. 85-111
[4] P.C. Kunstmann,
[5] Analyticity of submarkovian semigroups, Proc. Amer. Math. Soc., Volume 123 (1995), pp. 1097-1104
[6] Some problems on Markov semigroups, Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras, Math. Top., vol. 11, Akademie Verlag, Berlin, 1996, pp. 163-217
[7] Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Universitext, Springer-Verlag, Berlin, 1992
[8] Sectorialness of second order elliptic operators in divergence form, Proc. Amer. Math. Soc., Volume 113 (1991), pp. 701-706
[9] Analysis of Heat Equations on Domains, London Math. Soc. Monographs, vol. 30, Princeton University Press, Princeton, 2004
[10] Topics in Harmonic Analysis Related to the Littlewood–Paley Theory, Ann. Math. Stud., vol. 63, Princeton Univ. Press, Princeton, 1970
[11] The sector of holomorphy for symmetric sub-Markovian semigroups, Trier, 1994, de Gruyter, Berlin (1996), pp. 449-453
- On the numerical range of second-order elliptic operators with mixed boundary conditions in
, Journal of Evolution Equations, Volume 21 (2021) no. 3, pp. 3267-3288 | DOI:10.1007/s00028-020-00642-6 | Zbl:1487.35201 - Analyticity of nonsymmetric Ornstein-Uhlenbeck semigroup with respect to a weighted Gaussian measure, Potential Analysis, Volume 54 (2021) no. 1, pp. 95-117 | DOI:10.1007/s11118-019-09819-2 | Zbl:7303856
- Convexity of power functions and bilinear embedding for divergence-form operators with complex coefficients, Journal of the European Mathematical Society (JEMS), Volume 22 (2020) no. 10, pp. 3175-3221 | DOI:10.4171/jems/984 | Zbl:1458.35148
Cité par 3 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier