We introduce a new energy functional for maps between two manifolds, the critical points of which (-harmonic maps) are solutions of a system of anisotropic quasilinear elliptic equations. In the case when the target is a homogeneous manifold with left invariant metric, we establish a compactness result for the corresponding -harmonic maps. The proof relies on some deep results from harmonic analysis involving Hardy spaces.
Nous introduisons une nouvelle fonctionnelle d'énergie pour des applications sur des variétés ; les points critiques de cette fonctionnelle (applications -harmoniques) sont solutions d'un système d'équations elliptique, quasilinéaire, anisotrope. Dans le cas où la variété cible est homogène et munie d'une métrique invariante à gauche, nous établissons un résultat de compacité pour les applications -harmoniques correspondantes. La démonstration utilise un résultat fondamental d'analyse harmonique dans des espaces de Hardy.
Accepted:
Published online:
Mamadou Sango 1
@article{CRMATH_2006__342_12_923_0, author = {Mamadou Sango}, title = {Anisotropic harmonic maps into homogeneous manifolds: a compactness result}, journal = {Comptes Rendus. Math\'ematique}, pages = {923--926}, publisher = {Elsevier}, volume = {342}, number = {12}, year = {2006}, doi = {10.1016/j.crma.2006.03.018}, language = {en}, }
Mamadou Sango. Anisotropic harmonic maps into homogeneous manifolds: a compactness result. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 923-926. doi : 10.1016/j.crma.2006.03.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.018/
[1] Integral Representations of Functions and Embedding Theorems, vols. 1, 2, Wiley, 1979
[2] Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9), Volume 72 (1993) no. 3, pp. 247-286
[3] Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems, Nonlinear Anal., Volume 31 (1998), pp. 405-412
[4] Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Manuscripta Math., Volume 70 (1991) no. 2, pp. 203-218
[5] Harmonic maps, Conservation Laws and Moving Frames, Cambridge Tracts in Mathematics, vol. 150, Cambridge University Press, Cambridge, 2002
[6] Compactness properties of the p-harmonic flow into homogeneous spaces, Nonlinear Anal., Volume 28 (1997) no. 5, pp. 793-798
[7] On the theory of anisotropic Sobolev spaces, Uspekhi Mat. Nauk, Volume 38 (1983) no. 2(230), pp. 207-208 (in Russian)
[8] Convergence of minimizers for the p-Dirichlet integral, Math. Z., Volume 213 (1993) no. 3, pp. 449-456
[9] Compactness properties of weakly p-harmonic maps into homogeneous spaces, Indiana Univ. Math. J., Volume 44 (1995) no. 1, pp. 87-113
Cited by Sources:
Comments - Policy