Comptes Rendus
Partial Differential Equations
Anisotropic harmonic maps into homogeneous manifolds: a compactness result
Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 923-926.

We introduce a new energy functional for maps between two manifolds, the critical points of which (p˜-harmonic maps) are solutions of a system of anisotropic quasilinear elliptic equations. In the case when the target is a homogeneous manifold with left invariant metric, we establish a compactness result for the corresponding p˜-harmonic maps. The proof relies on some deep results from harmonic analysis involving Hardy spaces.

Nous introduisons une nouvelle fonctionnelle d'énergie pour des applications sur des variétés ; les points critiques de cette fonctionnelle (applications p˜-harmoniques) sont solutions d'un système d'équations elliptique, quasilinéaire, anisotrope. Dans le cas où la variété cible est homogène et munie d'une métrique invariante à gauche, nous établissons un résultat de compacité pour les applications p˜-harmoniques correspondantes. La démonstration utilise un résultat fondamental d'analyse harmonique dans des espaces de Hardy.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.03.018

Mamadou Sango 1

1 Department of Mathematics and Applied Mathematics, University of Pretoria/Mamelodi Campus, Pretoria 0002, South Africa
@article{CRMATH_2006__342_12_923_0,
     author = {Mamadou Sango},
     title = {Anisotropic harmonic maps into homogeneous manifolds: a compactness result},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {923--926},
     publisher = {Elsevier},
     volume = {342},
     number = {12},
     year = {2006},
     doi = {10.1016/j.crma.2006.03.018},
     language = {en},
}
TY  - JOUR
AU  - Mamadou Sango
TI  - Anisotropic harmonic maps into homogeneous manifolds: a compactness result
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 923
EP  - 926
VL  - 342
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2006.03.018
LA  - en
ID  - CRMATH_2006__342_12_923_0
ER  - 
%0 Journal Article
%A Mamadou Sango
%T Anisotropic harmonic maps into homogeneous manifolds: a compactness result
%J Comptes Rendus. Mathématique
%D 2006
%P 923-926
%V 342
%N 12
%I Elsevier
%R 10.1016/j.crma.2006.03.018
%G en
%F CRMATH_2006__342_12_923_0
Mamadou Sango. Anisotropic harmonic maps into homogeneous manifolds: a compactness result. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 923-926. doi : 10.1016/j.crma.2006.03.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.018/

[1] O.V. Besov; V.P. Ilin; S.M. Nikolskii Integral Representations of Functions and Embedding Theorems, vols. 1, 2, Wiley, 1979

[2] R. Coifman; P.-L. Lions; Y. Meyer; S. Semmes Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9), Volume 72 (1993) no. 3, pp. 247-286

[3] G. Dal Maso; F. Murat Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems, Nonlinear Anal., Volume 31 (1998), pp. 405-412

[4] F. Hélein Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Manuscripta Math., Volume 70 (1991) no. 2, pp. 203-218

[5] F. Hélein Harmonic maps, Conservation Laws and Moving Frames, Cambridge Tracts in Mathematics, vol. 150, Cambridge University Press, Cambridge, 2002

[6] N. Hungerbühler Compactness properties of the p-harmonic flow into homogeneous spaces, Nonlinear Anal., Volume 28 (1997) no. 5, pp. 793-798

[7] S.N. Kruzhkov; I.M. Kolodii On the theory of anisotropic Sobolev spaces, Uspekhi Mat. Nauk, Volume 38 (1983) no. 2(230), pp. 207-208 (in Russian)

[8] S. Luckhaus Convergence of minimizers for the p-Dirichlet integral, Math. Z., Volume 213 (1993) no. 3, pp. 449-456

[9] T. Toro; C. Wang Compactness properties of weakly p-harmonic maps into homogeneous spaces, Indiana Univ. Math. J., Volume 44 (1995) no. 1, pp. 87-113

Cited by Sources:

Comments - Policy