[L'algebre de Banach engendrée par un -semigroupe]
Soit un -semigroupe borné dans un espace de Banach par générateur A. Nous définissons comme la clotûre par rapport à la topologie de la norme opérateur de l'ensemble , où est la transformée de Laplace de par rapport au semigroupe T. Alors est une algèbre de Banach commutative. Dans cet article il est montré que, si la spectre unitaire de A est au plus dénombrable, alors la transformée de Gelfand de s'annule sur si et seulement si . Nous donnons aussi quelques applications de la semisimplicité du problème.
Let be a bounded -semigroup on a Banach space with generator A. We define as the closure with respect to the operator-norm topology of the set , where is the Laplace transform of with respect to the semigroup T. Then is a commutative Banach algebra. It is shown that if the unitary spectrum of A is at most countable, then the Gelfand transform of vanishes on if and only if, . Some applications to the semisimplicity problem are given.
Accepté le :
Publié le :
Heybetkulu Mustafayev 1
@article{CRMATH_2006__342_8_575_0, author = {Heybetkulu Mustafayev}, title = {The {Banach} algebra generated by a $ {C}_{0}$-semigroup}, journal = {Comptes Rendus. Math\'ematique}, pages = {575--578}, publisher = {Elsevier}, volume = {342}, number = {8}, year = {2006}, doi = {10.1016/j.crma.2006.02.017}, language = {en}, }
Heybetkulu Mustafayev. The Banach algebra generated by a $ {C}_{0}$-semigroup. Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 575-578. doi : 10.1016/j.crma.2006.02.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.017/
[1] The harmonic analysis of automorphism groups of operator algebras, Proc. Sympos. Pure Math., Volume 38 (1982), pp. 199-269
[2] On the spectrum of a one-parameter strongly continuous representation, Math. Scand., Volume 39 (1976), pp. 80-82
[3] On power bounded operators, J. Funct. Anal., Volume 68 (1986), pp. 313-328
[4] The spectral characterization of a class of almost periodic functions, Ann. Math., Volume 72 (1960), pp. 362-368
[5] The Asymptotic Behavior of Semigroups of Linear Operators, Birkhäuser, 1996
[6] Theorems of Katznelson–Tzafriri type for semigroups of operators, J. Funct. Anal., Volume 103 (1992), pp. 74-84
Cité par Sources :
Commentaires - Politique