[Nouveaux résultats sur les expanseurs]
En utilisant d'une approche purement analytique, nous obtenons de nouvelle familles d'expanseurs dans des groupes
Based on purely analytical methods, we exhibit new families of expanders in
Accepté le :
Publié le :
Jean Bourgain 1 ; Alex Gamburd 1, 2
@article{CRMATH_2006__342_10_717_0, author = {Jean Bourgain and Alex Gamburd}, title = {New results on expanders}, journal = {Comptes Rendus. Math\'ematique}, pages = {717--721}, publisher = {Elsevier}, volume = {342}, number = {10}, year = {2006}, doi = {10.1016/j.crma.2006.02.032}, language = {en}, }
Jean Bourgain; Alex Gamburd. New results on expanders. Comptes Rendus. Mathématique, Volume 342 (2006) no. 10, pp. 717-721. doi : 10.1016/j.crma.2006.02.032. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.032/
[1] J. Bourgain, On the Erdös–Volkmann and Katz–Tao ring conjectures GAFA, 13 (2003) 334–365
[2] J. Bourgain, A. Gamburd, Uniform expansion bounds for Cayley graphs of
[3] J. Bourgain, A. Gamburd, On the spectral gap for finitely-generated subgroups of
[4] A sum–product estimate in finite fields and applications, GAFA, Volume 14 (2004), pp. 27-57
[5] J. Bourgain, A. Glibichuk, S. Konyagin, Estimate for the number of sums and product and for exponential sums in fields of prime order, Proc. LMS, in press
[6] Quaquaversal tilings and rotations, Invent. Math., Volume 132 (1998), pp. 179-188
[7] The Solovay–Kitaev algorithm, Quantum Inf. Comput., Volume 6 (2006), pp. 81-95
[8] Growth rates in the quaquaversal tiling, Comput. Geom., Volume 23 (2000) no. 3, pp. 419-435
[9] Spectral gap for infinite index “congruence” subgroups of
[10] Spectra of elements in the group ring of
[11] H. Helfgott, Growth and generation in
[12] Some connections between Falconer's distance set conjecture and sets of Furstenberg type, New York J. Math., Volume 7 (2001), pp. 149-187
[13] Discrete Groups, Expanding Graphs and Invariant Measures, Progr. Math., vol. 195, Birkhäuser, 1994
[14] Cayley graphs: eigenvalues, expanders and random walk (P. Rowbinson, ed.), Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., vol. 218, Cambridge Univ. Press, 1995, pp. 155-189
[15] Groups and expanders (J. Friedaman, ed.), DIMACS Ser. Discrete Math. and Theoret. Comput. Sci., vol. 10, Amer. Math. Soc., 1993, pp. 95-109
[16] Bounds for multiplicatives of automorphic representations, Duke Math. J., Volume 64 (1991), pp. 207-227
[17] On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., vol. VII, Amer. Math. Soc., 1965, pp. 1-15
[18] T. Tao, Non-commutative sum set estimates, preprint
[19] T. Tao, V. Vu, Additive Combinatorics, Cambridge University Press, 2006, in press
- Arithmetic and dynamics on varieties of Markoff type, International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6–14, 2022. Volume 3. Sections 1–4, Berlin: European Mathematical Society (EMS), 2023, pp. 1800-1836 | DOI:10.4171/icm2022/191 | Zbl:1551.14103
- Additive combinatorics: with a view towards computer science and cryptography – an exposition, Number theory and related fields. In memory of Alf van der Poorten. Based on the proceedings of the international number theory conference, Newcastle, Australia, March 12–16, 2012, New York, NY: Springer, 2013, pp. 99-128 | DOI:10.1007/978-1-4614-6642-0_4 | Zbl:1303.11022
- Diameters of Chevalley groups over local rings., Archiv der Mathematik, Volume 99 (2012) no. 5, pp. 417-424 | DOI:10.1007/s00013-012-0451-6 | Zbl:1263.20050
- Growth in SL2 over finite fields, Journal of Group Theory, Volume 14 (2011) no. 2 | DOI:10.1515/jgt.2010.056
- Finite simple groups of Lie type as expanders., Journal of the European Mathematical Society (JEMS), Volume 13 (2011) no. 5, pp. 1331-1341 | DOI:10.4171/jems/282 | Zbl:1257.20016
- Суммы и произведения множеств и оценки рациональных тригонометрических сумм в полях простого порядка, Успехи математических наук, Volume 65 (2010) no. 4, p. 5 | DOI:10.4213/rm9367
- Efficient Quantum Tensor Product Expanders and k-Designs, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, Volume 5687 (2009), p. 548 | DOI:10.1007/978-3-642-03685-9_41
- Rigid actions of amenable groups, Israel Journal of Mathematics, Volume 173 (2009), pp. 61-90 | DOI:10.1007/s11856-009-0083-0 | Zbl:1187.43003
- , 21st Annual IEEE Conference on Computational Complexity (CCC'06) (2006), p. 111 | DOI:10.1109/ccc.2006.9
Cité par 9 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier