Based on purely analytical methods, we exhibit new families of expanders in (p prime) and , contributing to conjectures of A. Lubotzky and P. Sarnak.
En utilisant d'une approche purement analytique, nous obtenons de nouvelle familles d'expanseurs dans des groupes (p primier) et . Nos résultats contribuent à des conjectures de A. Lubotzky et P. Sarnak.
Accepted:
Published online:
Jean Bourgain 1; Alex Gamburd 1, 2
@article{CRMATH_2006__342_10_717_0, author = {Jean Bourgain and Alex Gamburd}, title = {New results on expanders}, journal = {Comptes Rendus. Math\'ematique}, pages = {717--721}, publisher = {Elsevier}, volume = {342}, number = {10}, year = {2006}, doi = {10.1016/j.crma.2006.02.032}, language = {en}, }
Jean Bourgain; Alex Gamburd. New results on expanders. Comptes Rendus. Mathématique, Volume 342 (2006) no. 10, pp. 717-721. doi : 10.1016/j.crma.2006.02.032. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.032/
[1] J. Bourgain, On the Erdös–Volkmann and Katz–Tao ring conjectures GAFA, 13 (2003) 334–365
[2] J. Bourgain, A. Gamburd, Uniform expansion bounds for Cayley graphs of , preprint
[3] J. Bourgain, A. Gamburd, On the spectral gap for finitely-generated subgroups of , preprint
[4] A sum–product estimate in finite fields and applications, GAFA, Volume 14 (2004), pp. 27-57
[5] J. Bourgain, A. Glibichuk, S. Konyagin, Estimate for the number of sums and product and for exponential sums in fields of prime order, Proc. LMS, in press
[6] Quaquaversal tilings and rotations, Invent. Math., Volume 132 (1998), pp. 179-188
[7] The Solovay–Kitaev algorithm, Quantum Inf. Comput., Volume 6 (2006), pp. 81-95
[8] Growth rates in the quaquaversal tiling, Comput. Geom., Volume 23 (2000) no. 3, pp. 419-435
[9] Spectral gap for infinite index “congruence” subgroups of , Israel J. Math., Volume 127 (2002), pp. 157-200
[10] Spectra of elements in the group ring of , J. Eur. Math. Soc., Volume 1 (1999), pp. 51-85
[11] H. Helfgott, Growth and generation in , preprint, 2005
[12] Some connections between Falconer's distance set conjecture and sets of Furstenberg type, New York J. Math., Volume 7 (2001), pp. 149-187
[13] Discrete Groups, Expanding Graphs and Invariant Measures, Progr. Math., vol. 195, Birkhäuser, 1994
[14] Cayley graphs: eigenvalues, expanders and random walk (P. Rowbinson, ed.), Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., vol. 218, Cambridge Univ. Press, 1995, pp. 155-189
[15] Groups and expanders (J. Friedaman, ed.), DIMACS Ser. Discrete Math. and Theoret. Comput. Sci., vol. 10, Amer. Math. Soc., 1993, pp. 95-109
[16] Bounds for multiplicatives of automorphic representations, Duke Math. J., Volume 64 (1991), pp. 207-227
[17] On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., vol. VII, Amer. Math. Soc., 1965, pp. 1-15
[18] T. Tao, Non-commutative sum set estimates, preprint
[19] T. Tao, V. Vu, Additive Combinatorics, Cambridge University Press, 2006, in press
Cited by Sources:
Comments - Policy