It is proved that a noetherian commutative local ring A containing a field is regular if there is a complex M of free A-modules with the following properties: for ; the homology of M has finite length; contains the residue field of A as a direct summand. This result is an essential component in the proofs of the McKay correspondence in dimension 3 and of the statement that threefold flops induce equivalences of derived categories.
On démontre qu'un anneau local noethérien commutatif A contenant un corps est régulier s'il existe un complexe M de A-modules libres avec les propriétés suivantes : pour ; l'homologie de M est de longueur finie ; contient le corps résiduel de A en tant que facteur direct. Ce résultat est une composante essentielle dans les démonstrations de la correspondance de McKay en dimension 3 et du fait que les flops de dimension trois induisent des équivalences de catégories dérivées.
Accepted:
Published online:
Tom Bridgeland 1, 2; Srikanth Iyengar 1, 2
@article{CRMATH_2006__342_10_723_0, author = {Tom Bridgeland and Srikanth Iyengar}, title = {A criterion for regularity of local rings}, journal = {Comptes Rendus. Math\'ematique}, pages = {723--726}, publisher = {Elsevier}, volume = {342}, number = {10}, year = {2006}, doi = {10.1016/j.crma.2006.03.019}, language = {en}, }
Tom Bridgeland; Srikanth Iyengar. A criterion for regularity of local rings. Comptes Rendus. Mathématique, Volume 342 (2006) no. 10, pp. 723-726. doi : 10.1016/j.crma.2006.03.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.019/
[1] Flops and derived categories, Invent. Math., Volume 147 (2002), pp. 613-632
[2] The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc., Volume 14 (2001), pp. 535-554
[3] Fourier–Mukai transforms for K3 and elliptic fibrations, J. Alg. Geom., Volume 11 (2002), pp. 629-657
[4] Cohen–Macaulay Rings, Cambridge Stud. Adv. Math., vol. 39, Cambridge Univ. Press, 1998
[5] Syzygies, London Math. Soc. Lecture Note Ser., vol. 106, Cambridge Univ. Press, 1985
[6] Topics in the Homological Theory of Modules Over Commutative Rings, CBMS Reg. Conf. Ser. Math., vol. 24, Amer. Math. Soc., 1975
[7] Big Cohen–Macaulay algebras in dimension three via Heitmann's theorem, J. Algebra, Volume 254 (2002), pp. 395-408
[8] Depth for complexes, and intersection theorems, Math. Z., Volume 230 (1999), pp. 545-567
[9] Commutative Ring Theory, Cambridge Stud. Adv. Math., vol. 8, Cambridge Univ. Press, Cambridge, 1986
[10] Le théorème d'intersection, C. R. Acad. Sci. Paris, Ser. I, Volume 304 (1987), pp. 177-180
[11] Local Algebra, Springer, 2000
[12] On the vanishing of Tor of the absolute integral closure, J. Algebra, Volume 275 (2004), pp. 567-574
Cited by Sources:
Comments - Policy