Comptes Rendus
Partial Differential Equations
Critical space for the parabolic-parabolic Keller–Segel model in Rd
[Espace critique pour le modèle de Keller–Segel parabolique-parabolique dans Rd]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 10, pp. 745-750.

Nous considérons le système de Keller–Segel posé sur Rd dans le cas d'une équation parabolique sur le chemoattractant. Nous démontrons que l'espace critique, comme dans le cas elliptique, est que la densité bactérienne initiale vérifie n0La(Rd), a>d/2, et que la concentration initiale de chémoattractant vérifie c0Ld(Rd). Dans ces espaces, une donnée initiale petite donne des solutions globales qui tendent vers 0 en temps grand comme l'équation de la chaleur ainsi que des effets régularisants de type hypercontractifs.

We study the Keller–Segel system in Rd when the chemoattractant concentration is described by a parabolic equation. We prove that the critical space, with some similarity to the elliptic case, is that the initial bacteria density satisfies n0La(Rd), a>d/2, and that the chemoattractant concentration satisfies c0Ld(Rd). In these spaces, we prove that small initial data give rise to global solutions that vanish as the heat equation for large times and that exhibit a regularizing effect of hypercontractivity type.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.03.008
Lucilla Corrias 1 ; Benoît Perthame 2

1 Département de mathématiques, Université d'Évry Val d'Essonne, rue du pere Jarlan, 91025 Evry cedex, France
2 DMA (UMR CNRS no. 8553), École normale supérieure, 45, rue d'Ulm, 75005 Paris cedex 05, France
@article{CRMATH_2006__342_10_745_0,
     author = {Lucilla Corrias and Beno{\^\i}t Perthame},
     title = {Critical space for the parabolic-parabolic {Keller{\textendash}Segel} model in $ {\mathbb{R}}^{d}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {745--750},
     publisher = {Elsevier},
     volume = {342},
     number = {10},
     year = {2006},
     doi = {10.1016/j.crma.2006.03.008},
     language = {en},
}
TY  - JOUR
AU  - Lucilla Corrias
AU  - Benoît Perthame
TI  - Critical space for the parabolic-parabolic Keller–Segel model in $ {\mathbb{R}}^{d}$
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 745
EP  - 750
VL  - 342
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2006.03.008
LA  - en
ID  - CRMATH_2006__342_10_745_0
ER  - 
%0 Journal Article
%A Lucilla Corrias
%A Benoît Perthame
%T Critical space for the parabolic-parabolic Keller–Segel model in $ {\mathbb{R}}^{d}$
%J Comptes Rendus. Mathématique
%D 2006
%P 745-750
%V 342
%N 10
%I Elsevier
%R 10.1016/j.crma.2006.03.008
%G en
%F CRMATH_2006__342_10_745_0
Lucilla Corrias; Benoît Perthame. Critical space for the parabolic-parabolic Keller–Segel model in $ {\mathbb{R}}^{d}$. Comptes Rendus. Mathématique, Volume 342 (2006) no. 10, pp. 745-750. doi : 10.1016/j.crma.2006.03.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.008/

[1] P. Biler, G. Karch, P. Laurençot, The 8π-problem for radially symmetric solutions of a chemotaxis model in a disc, Topol. Methods Nonlin. Anal. (2005), in press

[2] A. Blanchet, J. Dolbeault, B. Perthame, Two-dimensional Keller–Segel model: Optimal critical mass and qualitative properties of the solutions, (2006), in preparation

[3] M.P. Brenner; P. Constantin; L.P. Kadanoff; A. Schenkel; S.C. Venkataramani Diffusion, attraction and collapse, Nonlinearity, Volume 12 (1999), pp. 1071-1098

[4] V. Calvez, B. Perthame, M. Sharifi Tabar, Modified Keller–Segel system and critical mass for the log interaction kernel, (2006), in preparation

[5] L. Corrias; B. Perthame; H. Zaag Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., Volume 72 (2004), pp. 1-29

[6] J. Dolbeault; B. Perthame Optimal critical mass in the two-dimensional Keller–Segel model in R2, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 611-616

[7] M.A. Herrero; E. Medina; J.J.L. Velázquez Self-similar blow-up for a reaction–diffusion system, J. Comput. Appl. Math., Volume 97 (1998), pp. 99-119

[8] D. Horstmann From 1970 until now: The Keller–Segel model in chemotaxis and its consequences, Jahresber. Deutch. Math.-Verein., Volume 105 (2003), pp. 103-165

[9] D. Horstmann From 1970 until now: The Keller–Segel model in chemotaxis and its consequences, Jahresber. Deutch. Math.-Verein., Volume 106 (2004), pp. 51-69

[10] W. Jäger; S. Luckhaus On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., Volume 329 (1992), pp. 819-824

[11] E.F. Keller; L.A. Segel Model for chemotaxis, J. Theor. Biol., Volume 30 (1971), pp. 225-234

[12] J.D. Murray Spatial models and biomedical applications, Mathematical Biology, II, Interdiscip. Appl. Math., vol. 18, Springer-Verlag, New York, 2003

[13] T. Nagai; T. Senba Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., Volume 8 (1998), pp. 145-156

[14] T. Nagai; R. Syukuinn; M. Umesako Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in Rn, Funkcial. Ekvac., Volume 46 (2003), pp. 383-407

[15] M. Rascle; C. Ziti Finite time blow-up in some models of chemotaxis, J. Math. Biol., Volume 33 (1995), pp. 388-414

[16] J. Renclawowicz, T. Hillen, Analysis of an attraction–repulsion chemotaxis model, Preprint, 2006

[17] J.J.L. Velázquez Stability of some mechanisms of chemotactic aggregation, SIAM J. Appl. Math., Volume 62 (2002), pp. 1581-1633 (electronic)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A mathematical model of mast cell response to acupuncture needling

Yannick Deleuze

C. R. Math (2013)


A one-dimensional Keller–Segel equation with a drift issued from the boundary

Vincent Calvez; Nicolas Meunier; Raphael Voituriez

C. R. Math (2010)


Optimal critical mass in the two dimensional Keller–Segel model in R2

Jean Dolbeault; Benoît Perthame

C. R. Math (2004)