In this Note we announce the basic elements and results of a new theory of regular functions of one quaternionic variable. The theory we describe follows an idea of Cullen, but we use a more geometric approach to show that it is possible to build a rather complete theory.
Dans ce travail nous annonçons les éléments et les résultats de base d'une nouvelle théorie des fonctions régulières d'une variable quaternionelle. La théorie que nous décrivons ici s'inspire d'une idée de Cullen, mais nous utilisons une approche plus géométrique pour montrer qu'il est possible de construire une théorie plutôt complète.
Accepted:
Published online:
Graziano Gentili 1; Daniele C. Struppa 2
@article{CRMATH_2006__342_10_741_0, author = {Graziano Gentili and Daniele C. Struppa}, title = {A new approach to {Cullen-regular} functions of a quaternionic variable}, journal = {Comptes Rendus. Math\'ematique}, pages = {741--744}, publisher = {Elsevier}, volume = {342}, number = {10}, year = {2006}, doi = {10.1016/j.crma.2006.03.015}, language = {en}, }
Graziano Gentili; Daniele C. Struppa. A new approach to Cullen-regular functions of a quaternionic variable. Comptes Rendus. Mathématique, Volume 342 (2006) no. 10, pp. 741-744. doi : 10.1016/j.crma.2006.03.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.015/
[1] Complex Analysis, McGraw-Hill, New York, 1966
[2] Clifford Analysis, Pitman Res. Notes in Math., vol. 76, 1982
[3] Analysis of Dirac Systems and Computational Algebra, Birkhäuser, 2004
[4] An integral theorem for analytic intrinsic functions on quaternions, Duke Math. J., Volume 32 (1965), pp. 139-148
[5] Die Funktionentheorie der Differentialgleichungen und mit vier reellen Variablen, Comment. Math. Helv., Volume 7 (1934), pp. 307-330
[6] Über einen Hartogs'schen Satz, Comment. Math. Helv., Volume 12 (1939), pp. 75-80
[7] G. Gentili, D.C. Struppa, preprint, 2005
[8] Holomorphic Cliffordian functions, Adv. Appl. Clifford Algebras, Volume 8 (1998), pp. 323-340
[9] Elliptic Cliffordian functions, Complex Variables Theory Appl., Volume 45 (2001), pp. 297-318
[10] Modified quaternionic analysis in , Complex Variables Theory Appl., Volume 20 (1992), pp. 19-51
[11] Elements of a theory of intrinsic functions on algebras, Duke Math. J., Volume 27 (1960), pp. 1-19
[12] Quaternionic analysis, Math. Proc. Cambridge Philos. Soc., Volume 85 (1979), pp. 199-225
Cited by Sources:
Comments - Policy