[Équation unidimensionnelle de type Keller–Segel avec un flux au bord]
Nous étudions dans cette Note la dynamique d'un modèle unidimensionnel de type Keller–Segel posé sur une demi-droite. Dans le cas présent, la production du signal chimique est localisée sur le bord, au lieu d'être répartie à l'intérieur du domaine comme dans le cas classique. On démontre, sous des hypothèses convenables, la dichotomie suivante qui rappelle le système de Keller–Segel en dimension deux d'espace. Les solutions sont globales si la masse est sous-critique, elles explosent en temps fini si la masse dépasse la masse critique. Enfin, les solutions convergent vers un état d'équilibre lorsque la masse est égale à la valeur critique. Des méthodes d'entropie sont développées, dans le but d'obtenir des résultats de convergence quantitatifs. Cette Note est enrichie d'une brève introduction à un modèle plus réaliste (à nouveau unidimensionnel).
We investigate in this Note the dynamics of a one-dimensional Keller–Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller–Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This Note is completed with a brief introduction to a more realistic model (still one-dimensional).
Accepté le :
Publié le :
Vincent Calvez 1 ; Nicolas Meunier 2 ; Raphael Voituriez 3
@article{CRMATH_2010__348_11-12_629_0, author = {Vincent Calvez and Nicolas Meunier and Raphael Voituriez}, title = {A one-dimensional {Keller{\textendash}Segel} equation with a drift issued from the boundary}, journal = {Comptes Rendus. Math\'ematique}, pages = {629--634}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.04.009}, language = {en}, }
TY - JOUR AU - Vincent Calvez AU - Nicolas Meunier AU - Raphael Voituriez TI - A one-dimensional Keller–Segel equation with a drift issued from the boundary JO - Comptes Rendus. Mathématique PY - 2010 SP - 629 EP - 634 VL - 348 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2010.04.009 LA - en ID - CRMATH_2010__348_11-12_629_0 ER -
%0 Journal Article %A Vincent Calvez %A Nicolas Meunier %A Raphael Voituriez %T A one-dimensional Keller–Segel equation with a drift issued from the boundary %J Comptes Rendus. Mathématique %D 2010 %P 629-634 %V 348 %N 11-12 %I Elsevier %R 10.1016/j.crma.2010.04.009 %G en %F CRMATH_2010__348_11-12_629_0
Vincent Calvez; Nicolas Meunier; Raphael Voituriez. A one-dimensional Keller–Segel equation with a drift issued from the boundary. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 629-634. doi : 10.1016/j.crma.2010.04.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.009/
[1] Un théorème de compacité, C. R. Acad. Sci. Paris, Volume 256 (1963), pp. 5042-5044
[2] Existence and nonexistence of solutions for a model of gravitational interaction of particle III, Colloq. Math., Volume 68 (1995), pp. 229-239
[3] Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., Volume 59 (1998), pp. 845-869
[4] Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, Volume 35 (2009), pp. 133-168
[5] Infinite time aggregation for the critical Patlak–Keller–Segel model in , Comm. Pure Appl. Math., Volume 61 (2008), pp. 1449-1481
[6] Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, Volume 44 (2006) 32 pp. (electronic)
[7] Volume effects in the Keller–Segel model: energy estimates preventing blow-up, J. Math. Pures Appl., Volume 86 (2006), pp. 155-175
[8] V. Calvez, L. Corrias, A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller–Segel model in high dimension, submitted for publication
[9] V. Calvez, R.J. Hawkins, N. Meunier, R. Voituriez, Analysis of a self-organisation model for spontaneous cell polarization, in preparation
[10] Modified Keller–Segel system and critical mass for the log interaction kernel, Nonlinear Partial Differential Equations and Related Analysis, Contemp. Math., vol. 429, Amer. Math. Soc., Providence, RI, 2007
[11] Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system, 2009 http://www.citebase.org/abstract?id=oai:arXiv.org:0810.3369 (preprint arXiv)
[12] Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milano J. of Math., Volume 72 (2004), pp. 1-29
[13] Optimal critical mass in the two-dimensional Keller–Segel model in , C. R. Math. Acad. Sci. Paris, Volume 339 (2004), pp. 611-616
[14] The two-dimensional Keller–Segel model after blow-up, Discrete Contin. Dyn. Syst., Volume 25 (2009), pp. 109-121
[15] Rebuilding cytoskeleton roads: Active-transport-induced polarization of cells, Phys. Rev. E, Volume 80 (2009), p. 040903
[16] Singularity formation in the one-dimensional supercooled Stefan problem, European J. Appl. Math., Volume 7 (1996) no. 2, pp. 119-150
[17] Chemotactic collapse for the Keller–Segel model, J. Math. Biol., Volume 35 (1996) no. 2, pp. 177-194
[18] From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., Volume 105 (2003), pp. 103-165
[19] Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., Volume 12 (2001), pp. 159-177
[20] On explosions of solutions to a system of partial differential equations modeling chemotaxis, Trans. Amer. Math. Soc., Volume 329 (1992), pp. 819-824
[21] Model for chemotaxis, J. Theor. Biol., Volume 30 (1971), pp. 225-234
[22] Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci., Volume 5 (1995), pp. 581-601
[23] Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007
[24] Point dynamics in a singular limit of the Keller–Segel model. I. Motion of the concentration regions, SIAM J. Appl. Math., Volume 64 (2004), pp. 1198-1223
[25] Point dynamics in a singular limit of the Keller–Segel model. II. Formation of the concentration regions, SIAM J. Appl. Math., Volume 64 (2004), pp. 1224-1248
Cité par Sources :
Commentaires - Politique