[Sur les conditions de compatibilité de Saint Venant et le lemme de Poincaré]
Le théorème de Saint Venant constitue une caractérisation classique de champs de matrices réguliers comme des champs de tenseurs de déformation linéarisés. Ce théorème a été étendu aux champs de matrices avec des composantes dans
Saint Venant's theorem constitutes a classical characterization of smooth matrix fields as linearized strain tensor fields. This theorem has been extended to matrix fields with components in
Accepté le :
Publié le :
Cherif Amrouche 1 ; Philippe G. Ciarlet ; Liliana Gratie 2 ; Srinivasan Kesavan 3
@article{CRMATH_2006__342_11_887_0, author = {Cherif Amrouche and Philippe G. Ciarlet and Liliana Gratie and Srinivasan Kesavan}, title = {On {Saint} {Venant's} compatibility conditions and {Poincar\'e's} lemma}, journal = {Comptes Rendus. Math\'ematique}, pages = {887--891}, publisher = {Elsevier}, volume = {342}, number = {11}, year = {2006}, doi = {10.1016/j.crma.2006.03.026}, language = {en}, }
TY - JOUR AU - Cherif Amrouche AU - Philippe G. Ciarlet AU - Liliana Gratie AU - Srinivasan Kesavan TI - On Saint Venant's compatibility conditions and Poincaré's lemma JO - Comptes Rendus. Mathématique PY - 2006 SP - 887 EP - 891 VL - 342 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2006.03.026 LA - en ID - CRMATH_2006__342_11_887_0 ER -
%0 Journal Article %A Cherif Amrouche %A Philippe G. Ciarlet %A Liliana Gratie %A Srinivasan Kesavan %T On Saint Venant's compatibility conditions and Poincaré's lemma %J Comptes Rendus. Mathématique %D 2006 %P 887-891 %V 342 %N 11 %I Elsevier %R 10.1016/j.crma.2006.03.026 %G en %F CRMATH_2006__342_11_887_0
Cherif Amrouche; Philippe G. Ciarlet; Liliana Gratie; Srinivasan Kesavan. On Saint Venant's compatibility conditions and Poincaré's lemma. Comptes Rendus. Mathématique, Volume 342 (2006) no. 11, pp. 887-891. doi : 10.1016/j.crma.2006.03.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.026/
[1] C. Amrouche, P.G. Ciarlet, L. Gratie, S. Kesavan, New formulations of linearized elasticity problems, based on extensions of Donati's theorem, C. R. Acad. Sci. Paris, Ser. I, in press
[2] C. Amrouche, P.G. Ciarlet, L. Gratie, S. Kesavan, On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., in press
[3] Another approach to linearized elasticity and a new proof of Korn's inequality, Math. Models Methods Appl. Sci., Volume 15 (2005), pp. 259-271
[4] Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 2: Functional and Variational Methods, Springer, 1988
[5] G. Geymonat, F. Krasucki, Some remarks on the compatibility conditions in elasticity, Accad. Naz. Sci. XL Mem. Math. Appl., in press
[6] Beltrami's solutions of general equilibrium equations in continuum mechanics, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 359-363
[7] Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Heidelberg, 1986
[8] On Poincaré's and J.-L. Lions' lemmas, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 27-30
Cité par Sources :
Commentaires - Politique