[Sur les conditions de compatibilité de Saint Venant et le lemme de Poincaré]
Le théorème de Saint Venant constitue une caractérisation classique de champs de matrices réguliers comme des champs de tenseurs de déformation linéarisés. Ce théorème a été étendu aux champs de matrices avec des composantes dans
Saint Venant's theorem constitutes a classical characterization of smooth matrix fields as linearized strain tensor fields. This theorem has been extended to matrix fields with components in
Accepté le :
Publié le :
Cherif Amrouche 1 ; Philippe G. Ciarlet ; Liliana Gratie 2 ; Srinivasan Kesavan 3
@article{CRMATH_2006__342_11_887_0, author = {Cherif Amrouche and Philippe G. Ciarlet and Liliana Gratie and Srinivasan Kesavan}, title = {On {Saint} {Venant's} compatibility conditions and {Poincar\'e's} lemma}, journal = {Comptes Rendus. Math\'ematique}, pages = {887--891}, publisher = {Elsevier}, volume = {342}, number = {11}, year = {2006}, doi = {10.1016/j.crma.2006.03.026}, language = {en}, }
TY - JOUR AU - Cherif Amrouche AU - Philippe G. Ciarlet AU - Liliana Gratie AU - Srinivasan Kesavan TI - On Saint Venant's compatibility conditions and Poincaré's lemma JO - Comptes Rendus. Mathématique PY - 2006 SP - 887 EP - 891 VL - 342 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2006.03.026 LA - en ID - CRMATH_2006__342_11_887_0 ER -
%0 Journal Article %A Cherif Amrouche %A Philippe G. Ciarlet %A Liliana Gratie %A Srinivasan Kesavan %T On Saint Venant's compatibility conditions and Poincaré's lemma %J Comptes Rendus. Mathématique %D 2006 %P 887-891 %V 342 %N 11 %I Elsevier %R 10.1016/j.crma.2006.03.026 %G en %F CRMATH_2006__342_11_887_0
Cherif Amrouche; Philippe G. Ciarlet; Liliana Gratie; Srinivasan Kesavan. On Saint Venant's compatibility conditions and Poincaré's lemma. Comptes Rendus. Mathématique, Volume 342 (2006) no. 11, pp. 887-891. doi : 10.1016/j.crma.2006.03.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.026/
[1] C. Amrouche, P.G. Ciarlet, L. Gratie, S. Kesavan, New formulations of linearized elasticity problems, based on extensions of Donati's theorem, C. R. Acad. Sci. Paris, Ser. I, in press
[2] C. Amrouche, P.G. Ciarlet, L. Gratie, S. Kesavan, On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., in press
[3] Another approach to linearized elasticity and a new proof of Korn's inequality, Math. Models Methods Appl. Sci., Volume 15 (2005), pp. 259-271
[4] Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 2: Functional and Variational Methods, Springer, 1988
[5] G. Geymonat, F. Krasucki, Some remarks on the compatibility conditions in elasticity, Accad. Naz. Sci. XL Mem. Math. Appl., in press
[6] Beltrami's solutions of general equilibrium equations in continuum mechanics, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 359-363
[7] Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Heidelberg, 1986
[8] On Poincaré's and J.-L. Lions' lemmas, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 27-30
- Thermo-mechanically coupled compatibility conditions in orthogonal curvilinear coordinates: equivalent temperature variation of initially stressed elastomers, Applied Mathematics and Mechanics, Volume 46 (2025) no. 3, p. 423 | DOI:10.1007/s10483-025-3230-9
- Korn–Maxwell–Sobolev inequalities for general incompatibilities, Mathematical Models and Methods in Applied Sciences, Volume 34 (2024) no. 03, p. 523 | DOI:10.1142/s0218202524500088
- The elasticity complex: compact embeddings and regular decompositions, Applicable Analysis, Volume 102 (2023) no. 16, p. 4393 | DOI:10.1080/00036811.2022.2117497
- Nonthermoelastic martensitic features in ideal martensites due to volume effects, Physical Review B, Volume 108 (2023) no. 2 | DOI:10.1103/physrevb.108.024102
- Lp-trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 152 (2022) no. 6, p. 1477 | DOI:10.1017/prm.2021.62
- Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 4 | DOI:10.1007/s00526-021-02000-x
- Elastic multipole method for describing deformation of infinite two-dimensional solids with circular inclusions, Physical Review E, Volume 103 (2021) no. 5 | DOI:10.1103/physreve.103.053003
- Fine properties of functions of bounded deformation-an approach via linear PDEs, Mathematics in Engineering, Volume 2 (2020) no. 3, p. 386 | DOI:10.3934/mine.2020018
- A Study on the ‘Compatiblity Assumption’ of Contemporary Multiplicative Plasicity Models, Strojnícky časopis - Journal of Mechanical Engineering, Volume 69 (2019) no. 2, p. 15 | DOI:10.2478/scjme-2019-0015
- The Calabi complex and Killing sheaf cohomology, Journal of Geometry and Physics, Volume 113 (2017), p. 131 | DOI:10.1016/j.geomphys.2016.06.009
- New Variational Principles for Solving Extended Dirichlet-Neumann Problems, Journal of Elasticity, Volume 123 (2016) no. 1, p. 1 | DOI:10.1007/s10659-015-9544-3
- Korn's inequality and Donati's theorem for the conformal Killing operator on pseudo-Euclidean space, Journal of Mathematical Analysis and Applications, Volume 345 (2008) no. 2, p. 777 | DOI:10.1016/j.jmaa.2008.04.063
- On the characterizations of matrix fields as linearized strain tensor fields, Journal de Mathématiques Pures et Appliquées, Volume 86 (2006) no. 2, p. 116 | DOI:10.1016/j.matpur.2006.04.004
Cité par 13 documents. Sources : Crossref
Commentaires - Politique