[Une approche lagrangienne de l'élasticité linéarisée intrinsèque]
On considère le problème en déplacement pur et le problème en traction pure de l'élasticité linéarisée tri-dimensionnelle. On montre que, dans chaque cas, l'approche intrinsèque conduit à un problème de minimisation quadratique avec des contraintes semblables à celles de Donati. Utilisant la condition inf–sup de Babuška–Brezzi, on montre ensuite que, dans chaque cas, le minimiseur du problème de minimisation avec contraintes trouvé dans une approche intrinsèque est le premier argument du point-selle d'un lagrangien approprié, ce qui fait que le second argument de ce point-selle est le multiplicateur de Lagrange associé aux contraintes correspondantes.
We consider the pure traction problem and the pure displacement problem of three-dimensional linearized elasticity. We show that, in each case, the intrinsic approach leads to a quadratic minimization problem constrained by Donati-like relations. Using the Babuška–Brezzi inf–sup condition, we then show that, in each case, the minimizer of the constrained minimization problem found in an intrinsic approach is the first argument of the saddle-point of an ad hoc Lagrangian, so that the second argument of this saddle-point is the Lagrange multiplier associated with the corresponding constraints.
Publié le :
Philippe G. Ciarlet 1 ; Patrick Ciarlet 2 ; Oana Iosifescu 3 ; Stefan Sauter 4 ; Jun Zou 5
@article{CRMATH_2010__348_9-10_587_0, author = {Philippe G. Ciarlet and Patrick Ciarlet and Oana Iosifescu and Stefan Sauter and Jun Zou}, title = {A {Lagrangian} approach to intrinsic linearized elasticity}, journal = {Comptes Rendus. Math\'ematique}, pages = {587--592}, publisher = {Elsevier}, volume = {348}, number = {9-10}, year = {2010}, doi = {10.1016/j.crma.2010.04.011}, language = {en}, }
TY - JOUR AU - Philippe G. Ciarlet AU - Patrick Ciarlet AU - Oana Iosifescu AU - Stefan Sauter AU - Jun Zou TI - A Lagrangian approach to intrinsic linearized elasticity JO - Comptes Rendus. Mathématique PY - 2010 SP - 587 EP - 592 VL - 348 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2010.04.011 LA - en ID - CRMATH_2010__348_9-10_587_0 ER -
%0 Journal Article %A Philippe G. Ciarlet %A Patrick Ciarlet %A Oana Iosifescu %A Stefan Sauter %A Jun Zou %T A Lagrangian approach to intrinsic linearized elasticity %J Comptes Rendus. Mathématique %D 2010 %P 587-592 %V 348 %N 9-10 %I Elsevier %R 10.1016/j.crma.2010.04.011 %G en %F CRMATH_2010__348_9-10_587_0
Philippe G. Ciarlet; Patrick Ciarlet; Oana Iosifescu; Stefan Sauter; Jun Zou. A Lagrangian approach to intrinsic linearized elasticity. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 587-592. doi : 10.1016/j.crma.2010.04.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.011/
[1] On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., Volume 86 (2006), pp. 116-132
[2] The finite element method with Lagrange multipliers, Numer. Math., Volume 20 (1973), pp. 179-192
[3] On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., Volume R-2 (1974), pp. 129-151
[4] Mixed and Hybrid Finite Element Methods, Springer, 1991
[5] Another approach to linearized elasticity and a new proof of Korn's inequality, Math. Mod. Meth. Appl. Sci., Volume 15 (2005), pp. 259-271
[6] P.G. Ciarlet, P. Ciarlet Jr., O. Iosifescu, S. Sauter, Jun Zou, Lagrange multipliers in intrinsic elasticity, in preparation
[7] Les Inéquations en Mécanique et en Physique, Dunod, 1972
[8] Some remarks on the compatibility conditions in elasticity, Acad. Naz. Sci., Volume XL 123 (2005), pp. 175-182
[9] Beltrami's solutions of general equilibrium equations in continuum mechanics, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 359-363
[10] Finite Element Methods for Navier–Stokes Equations, Springer, 1986
[11] St. Venant's compatibility conditions, Tensor N.S., Volume 28 (1974), pp. 5-12
Cité par Sources :
Commentaires - Politique