[Nouvelles formulations de problèmes d'élasticité linéarisée, basées sur des généralisations du théorème de Donati]
Le théorème classique de Donati sert à caractériser les champs de matrices réguliers qui sont des champs de déformation linéarisés. Dans cette Note, on donne plusieurs généralisations de ce théorème, en particulier à des champs de matrices dont les composantes sont seulement dans . On montre ensuite que de telles généralisations conduisent à de nouvelles formulations des problèmes d'élasticité linéarisée tridimensionnelle, comme des problèmes de minimisation quadratique où les déformations sont les inconnues principales.
The classical Donati theorem is used for characterizing smooth matrix fields as linearized strain tensor fields. In this Note, we give several generalizations of this theorem, notably to matrix fields whose components are only in . We then show that our extensions of Donati's theorem allow to reformulate in a novel fashion linearized three-dimensional elasticity problems as quadratic minimization problems with the strains as the primary unknowns.
Accepté le :
Publié le :
Cherif Amrouche 1 ; Philippe G. Ciarlet 2 ; Liliana Gratie 3 ; Srinivasan Kesavan 4
@article{CRMATH_2006__342_10_785_0, author = {Cherif Amrouche and Philippe G. Ciarlet and Liliana Gratie and Srinivasan Kesavan}, title = {New formulations of linearized elasticity problems, based on extensions of {Donati's} theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {785--789}, publisher = {Elsevier}, volume = {342}, number = {10}, year = {2006}, doi = {10.1016/j.crma.2006.03.027}, language = {en}, }
TY - JOUR AU - Cherif Amrouche AU - Philippe G. Ciarlet AU - Liliana Gratie AU - Srinivasan Kesavan TI - New formulations of linearized elasticity problems, based on extensions of Donati's theorem JO - Comptes Rendus. Mathématique PY - 2006 SP - 785 EP - 789 VL - 342 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2006.03.027 LA - en ID - CRMATH_2006__342_10_785_0 ER -
%0 Journal Article %A Cherif Amrouche %A Philippe G. Ciarlet %A Liliana Gratie %A Srinivasan Kesavan %T New formulations of linearized elasticity problems, based on extensions of Donati's theorem %J Comptes Rendus. Mathématique %D 2006 %P 785-789 %V 342 %N 10 %I Elsevier %R 10.1016/j.crma.2006.03.027 %G en %F CRMATH_2006__342_10_785_0
Cherif Amrouche; Philippe G. Ciarlet; Liliana Gratie; Srinivasan Kesavan. New formulations of linearized elasticity problems, based on extensions of Donati's theorem. Comptes Rendus. Mathématique, Volume 342 (2006) no. 10, pp. 785-789. doi : 10.1016/j.crma.2006.03.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.027/
[1] C. Amrouche, P.G. Ciarlet, L. Gratie, S. Kesavan, On Saint Venant's compatibility conditions and Poincaré's lemma, C. R. Acad. Sci. Paris, Ser. I, in press
[2] C. Amrouche, P.G. Ciarlet, L. Gratie, S. Kesavan, On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., in press
[3] Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., Volume 44 (1994), pp. 109-140
[4] Another approach to linearized elasticity and a new proof of Korn's inequality, Math. Models Methods Appl. Sci., Volume 15 (2005), pp. 259-271
[5] Les Inéquations en Mécanique et en Physique, Dunod, 1972
[6] G. Geymonat, F. Krasucki, Some remarks on the compatibility conditions in elasticity, Accad. Naz. Sci. XL Mem. Math. Appl., in press
[7] Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Heidelberg, 1986
[8] Duality characterization of strain tensor distributions in an arbitrary open set, J. Math. Anal. Appl., Volume 72 (1979), pp. 760-770
[9] Espaces d'interpolation et théorème de Soboleff, Ann. Inst. Fourier, Volume 16 (1966), pp. 279-317
[10] L. Tartar, Topics in Nonlinear Analysis, Publications Mathématiques d'Orsay No. 78.13, Université Paris-Sud, 1978
[11] St. Venant's compatibility conditions, Tensor (N.S.), Volume 28 (1974), pp. 5-12
Cité par Sources :
Commentaires - Politique