The problem of the investigation of the simplest n-dimensional continued fraction in the sense of Klein for was posed by V. Arnold. The answer for the case can be found in the works of E. Korkina (1995) and G. Lachaud (1995). In present Note we study the case .
Le problème de l'étude les plus simple fractions continues n-dimensional en sens de Klein pour a été poser de V. Arnold. Le solution pour la case de a presenté dans les articles de E. Korkina (1995) et G. Lachaud (1995). Dans la Note présente, on étude la case de .
Accepted:
Published online:
Oleg Karpenkov 1
@article{CRMATH_2006__343_1_5_0, author = {Oleg Karpenkov}, title = {Three examples of three-dimensional continued fractions in the sense of {Klein}}, journal = {Comptes Rendus. Math\'ematique}, pages = {5--7}, publisher = {Elsevier}, volume = {343}, number = {1}, year = {2006}, doi = {10.1016/j.crma.2006.04.023}, language = {en}, }
Oleg Karpenkov. Three examples of three-dimensional continued fractions in the sense of Klein. Comptes Rendus. Mathématique, Volume 343 (2006) no. 1, pp. 5-7. doi : 10.1016/j.crma.2006.04.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.023/
[1] Continued Fractions, Moscow Center of Continuous Mathematical Education, Moscow, 2002
[2] On tori decompositions associated with two-dimensional continued fractions of cubic irrationalities, Funct. Anal. Appl., Volume 38 (2004) no. 2, pp. 28-37
[3] Two-dimensional continued fractions. The simplest examples, Proc. Steklov Inst. Math., Volume 209 (1995), pp. 143-166
[4] G. Lachaud, Voiles et Polyèdres de Klein, preprint no. 95-22, Laboratoire de Mathématiques Discrètes du C.N.R.S., Luminy, 1995
[5] J.-O. Moussafir, Voiles et Polyédres de Klein: Geometrie, Algorithmes et Statistiques, docteur en sciences thése, Université Paris IX-Dauphine, 2000
Cited by Sources:
Comments - Policy