[Est-il possible de supprimer des singularités dans un domaine fissuré ?]
On montre que, dans un domaine à coins, par une action sur une petite partie du domaine ou sur une petite partie de la frontière, on obtient une solution régulière de l'équation de Laplace.
In a domain with corners, we prove that by acting on an arbitrarily small part of the domain or on a small part of the boundary, we obtain a regular solution of the Laplace equation.
Accepté le :
Publié le :
Mary Teuw Niane 1 ; Gilbert Bayili 1, 2 ; Abdoulaye Sène 1, 3 ; Abdou Sène 1 ; Mamadou Sy 1
@article{CRMATH_2006__343_2_115_0, author = {Mary Teuw Niane and Gilbert Bayili and Abdoulaye S\`ene and Abdou S\`ene and Mamadou Sy}, title = {Is it possible to cancel singularities in a domain with corners and cracks?}, journal = {Comptes Rendus. Math\'ematique}, pages = {115--118}, publisher = {Elsevier}, volume = {343}, number = {2}, year = {2006}, doi = {10.1016/j.crma.2006.05.003}, language = {en}, }
TY - JOUR AU - Mary Teuw Niane AU - Gilbert Bayili AU - Abdoulaye Sène AU - Abdou Sène AU - Mamadou Sy TI - Is it possible to cancel singularities in a domain with corners and cracks? JO - Comptes Rendus. Mathématique PY - 2006 SP - 115 EP - 118 VL - 343 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2006.05.003 LA - en ID - CRMATH_2006__343_2_115_0 ER -
%0 Journal Article %A Mary Teuw Niane %A Gilbert Bayili %A Abdoulaye Sène %A Abdou Sène %A Mamadou Sy %T Is it possible to cancel singularities in a domain with corners and cracks? %J Comptes Rendus. Mathématique %D 2006 %P 115-118 %V 343 %N 2 %I Elsevier %R 10.1016/j.crma.2006.05.003 %G en %F CRMATH_2006__343_2_115_0
Mary Teuw Niane; Gilbert Bayili; Abdoulaye Sène; Abdou Sène; Mamadou Sy. Is it possible to cancel singularities in a domain with corners and cracks?. Comptes Rendus. Mathématique, Volume 343 (2006) no. 2, pp. 115-118. doi : 10.1016/j.crma.2006.05.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.003/
[1] Singularities in Boundary Value Problems, Masson, 1992
[2] Linear Partial Differential Operators, Springer-Verlag, 1976
[3] Boundary value problems for elliptic equations in domains with conical or angular points, Transactions Moscow Mat. Soc. (1967), pp. 227-313
- Study and suppression of singularities in wave-type evolution equations on non-convex domains with cracks, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, Volume 71 (2022) no. 4, p. 1179 | DOI:10.31801/cfsuasmas.1049893
- Cancellation of the singularities of the heat equation restricted to a finite bandwich, African Diaspora Journal of Mathematics, Volume 16 (2013) no. 1, pp. 82-89 | Zbl:1295.35012
- Relaxation of an optimal design problem in fracture mechanic: the anti-plane case, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 16 (2010) no. 3, pp. 719-743 | DOI:10.1051/cocv/2009019 | Zbl:1221.49074
- On the active control of crack growth in elastic media, Computer Methods in Applied Mechanics and Engineering, Volume 198 (2008) no. 3-4, pp. 407-419 | DOI:10.1016/j.cma.2008.08.010 | Zbl:1228.74052
Cité par 4 documents. Sources : Crossref, zbMATH
Commentaires - Politique