[Oscillations dans la frontière et conditions aux limites non linéaires ]
On étudie comment les oscillations dans la frontière d'un domaine affectent le comportement des solutions des équations elliptiques avec conditions aux limites non linéaires du type . On montre qu'il existe une fonction definie sur la frontière et dependant des oscillations sur la frontière, telle que si est une fonction bornée, alors pour toute g non lineaire, la limite des conditions sur la frontière est donnée par (Théorème 2.1, Partie 1). De plus, si g est dissipative et , alors on obtient une condition aux limites du type Dirichlet (Théorème 2.1, Partie 2).
We study how oscillations in the boundary of a domain affect the behavior of solutions of elliptic equations with nonlinear boundary conditions of the type . We show that there exists a function defined on the boundary, that depends on the oscillations at the boundary, such that, if is a bounded function, then, for all nonlinearities g, the limiting boundary condition is given by (Theorem 2.1, Case 1). Moreover, if g is dissipative and then we obtain a Dirichlet boundary condition (Theorem 2.1, Case 2).
Accepté le :
Publié le :
José M. Arrieta 1 ; Simone M. Bruschi 2
@article{CRMATH_2006__343_2_99_0, author = {Jos\'e M. Arrieta and Simone M. Bruschi}, title = {Boundary oscillations and nonlinear boundary conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {99--104}, publisher = {Elsevier}, volume = {343}, number = {2}, year = {2006}, doi = {10.1016/j.crma.2006.05.007}, language = {en}, }
José M. Arrieta; Simone M. Bruschi. Boundary oscillations and nonlinear boundary conditions. Comptes Rendus. Mathématique, Volume 343 (2006) no. 2, pp. 99-104. doi : 10.1016/j.crma.2006.05.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.007/
[1] Spectral convergence and nonlinear dynamics of reaction–diffusion equations under perturbations of the domain, Journal of Differential Equations, Volume 199 (2004), pp. 143-178
[2] Attractors of parabolic problems with nonlinear boundary conditions. Uniform bounds, Communications in Partial Differential Equations, Volume 25 (2000) no. 1&2, pp. 1-37
[3] Why viscous fluids adhere to rugose walls: a mathematical explanation, Journal of Differential Equations, Volume 189 (2003), pp. 526-537
[4] The boundary-value problem in domains with very rapidly oscillating boundary, Journal of Mathematical Analysis and Applications, Volume 231 (1999), pp. 213-234
[5] Domain perturbation of elliptic equations subject to Robin boundary conditions, Journal of Differential Equations, Volume 138 (1997), pp. 86-132
[6] Linear and Quasilinear Elliptic Equations, Academic Press, 1968
[7] Sobolev Spaces, Springer-Verlag, Berlin, 1985
[8] N. Neuss, M. Neuss-Radu, A. Mikelic, Effective laws for the Poisson equation on domains with curved oscillating boundaries, Preprint 2004-36, SFB 359, Heidelberg, 2004
[9] The oscillating boundary phenomenon in the homogenization of a climatization problem, Differential Equations, Volume 37 (2001), pp. 1276-1283
[10] Non Homogenous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer-Verlag, Berlin, 1980
Cité par Sources :
Commentaires - Politique