[Oscillations dans la frontière et conditions aux limites non linéaires ]
On étudie comment les oscillations dans la frontière d'un domaine affectent le comportement des solutions des équations elliptiques avec conditions aux limites non linéaires du type
We study how oscillations in the boundary of a domain affect the behavior of solutions of elliptic equations with nonlinear boundary conditions of the type
Accepté le :
Publié le :
José M. Arrieta 1 ; Simone M. Bruschi 2
@article{CRMATH_2006__343_2_99_0, author = {Jos\'e M. Arrieta and Simone M. Bruschi}, title = {Boundary oscillations and nonlinear boundary conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {99--104}, publisher = {Elsevier}, volume = {343}, number = {2}, year = {2006}, doi = {10.1016/j.crma.2006.05.007}, language = {en}, }
José M. Arrieta; Simone M. Bruschi. Boundary oscillations and nonlinear boundary conditions. Comptes Rendus. Mathématique, Volume 343 (2006) no. 2, pp. 99-104. doi : 10.1016/j.crma.2006.05.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.007/
[1] Spectral convergence and nonlinear dynamics of reaction–diffusion equations under perturbations of the domain, Journal of Differential Equations, Volume 199 (2004), pp. 143-178
[2] Attractors of parabolic problems with nonlinear boundary conditions. Uniform bounds, Communications in Partial Differential Equations, Volume 25 (2000) no. 1&2, pp. 1-37
[3] Why viscous fluids adhere to rugose walls: a mathematical explanation, Journal of Differential Equations, Volume 189 (2003), pp. 526-537
[4] The boundary-value problem in domains with very rapidly oscillating boundary, Journal of Mathematical Analysis and Applications, Volume 231 (1999), pp. 213-234
[5] Domain perturbation of elliptic equations subject to Robin boundary conditions, Journal of Differential Equations, Volume 138 (1997), pp. 86-132
[6] Linear and Quasilinear Elliptic Equations, Academic Press, 1968
[7] Sobolev Spaces, Springer-Verlag, Berlin, 1985
[8] N. Neuss, M. Neuss-Radu, A. Mikelic, Effective laws for the Poisson equation on domains with curved oscillating boundaries, Preprint 2004-36, SFB 359, Heidelberg, 2004
[9] The oscillating boundary phenomenon in the homogenization of a climatization problem, Differential Equations, Volume 37 (2001), pp. 1276-1283
[10] Non Homogenous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer-Verlag, Berlin, 1980
Cité par Sources :
Commentaires - Politique