Nous donnons des exemples de systèmes dynamiques quasi-hyperboliques ayant les propriétés suivantes : décroissance des corrélations à la vitesse
We give examples of quasi-hyperbolic dynamical systems with the following properties: polynomial decay of correlations, convergence in law toward a non-Gaussian law of the ergodic sums (divided by
Accepté le :
Publié le :
Stéphane Le Borgne 1
@article{CRMATH_2006__343_2_125_0, author = {St\'ephane Le Borgne}, title = {Exemples de syst\`emes dynamiques quasi-hyperboliques \`a d\'ecorr\'elations lentes}, journal = {Comptes Rendus. Math\'ematique}, pages = {125--128}, publisher = {Elsevier}, volume = {343}, number = {2}, year = {2006}, doi = {10.1016/j.crma.2006.05.010}, language = {fr}, }
Stéphane Le Borgne. Exemples de systèmes dynamiques quasi-hyperboliques à décorrélations lentes. Comptes Rendus. Mathématique, Volume 343 (2006) no. 2, pp. 125-128. doi : 10.1016/j.crma.2006.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.010/
[1] Méthode de martingales et flot géodésique sur une surface de courbure constante négative, Ergodic Theory Dynam. Systems, Volume 21 (2001) no. 2, pp. 421-441
[2] Sharp polynomial estimates for the decay of correlations, Israel J. Math., Volume 139 (2004), pp. 29-65
[3] Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov, Ann. Inst. H. Poincaré Probab. Statist., Volume 24 (1988) no. 1, pp. 73-98
[4] T,
[5] A limit theorem related to a new class of self-similar processes, Z. Wahrsch. Verw. Gebiete, Volume 50 (1979) no. 1, pp. 5-25
[6] Exemples de systèmes dynamiques quasi-hyperboliques à décorrélations lentes http://perso.univ-rennes1.fr/stephane.leborgne/
[7] A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems, Volume 19 (1999), pp. 671-685
[8] Intermittent transition to turbulence in dissipative dynamical systems, Commun. Math. Phys., Volume 74 (1980), pp. 189-197
[9] Asymptotically Brownian skew products give non-loosely Bernoulli K-automorphisms, Invent. Math., Volume 91 (1988) no. 1, pp. 105-128
[10] Subexponential decay of correlations, Invent. Math., Volume 150 (2002) no. 3, pp. 629-653
[11] Recurrence times and rates of mixing, Israel J. Math., Volume 110 (1999), pp. 153-188
- Exponential Mixing for Heterochaos Baker Maps and the Dyck System, Journal of Dynamics and Differential Equations (2024) | DOI:10.1007/s10884-024-10370-x
- Quantitative recurrence for
transformations, Probability Theory and Related Fields (2024) | DOI:10.1007/s00440-024-01287-z - Flexibility of statistical properties for smooth systems satisfying the central limit theorem, Inventiones mathematicae, Volume 230 (2022) no. 1, p. 31 | DOI:10.1007/s00222-022-01121-0
- Mixing properties of generalized T,T−1 transformations, Israel Journal of Mathematics, Volume 247 (2022) no. 1, p. 21 | DOI:10.1007/s11856-022-2289-3
- Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 9, p. 4239 | DOI:10.3934/dcds.2013.33.4239
- Transient random walk in
with stationary orientations, ESAIM: Probability and Statistics, Volume 13 (2009), p. 417 | DOI:10.1051/ps:2008019
Cité par 6 documents. Sources : Crossref
Commentaires - Politique