[Formules générales pour l'analyse régularisée des nombres de conditionnement]
Nous donnons des estimations du volume de l'intersection des voisinages tubulaires autour d'une sous-variété Σ de l'espace projectif réel avec un disque de rayon σ. Les bornes s'expriment en fonction de σ, de la dimension de l'espace ambiant, et du degré des équations définissant Σ. Nous utilisons ces bornes pour obtenir des estimations au sens de l'analyse régularisé pour des nombres de conditionnement coniques.
We provide estimates on the volume of tubular neighborhoods around a subvariety Σ of real projective space, intersected with a disk of radius σ. The bounds are in terms of σ, the dimension of the ambient space, and the degree of equations defining Σ. We use these bounds to obtain smoothed analysis estimates for some conic condition numbers.
Accepté le :
Publié le :
Peter Bürgisser 1 ; Felipe Cucker 2 ; Martin Lotz 2
@article{CRMATH_2006__343_2_145_0, author = {Peter B\"urgisser and Felipe Cucker and Martin Lotz}, title = {General formulas for the smoothed analysis of condition numbers}, journal = {Comptes Rendus. Math\'ematique}, pages = {145--150}, publisher = {Elsevier}, volume = {343}, number = {2}, year = {2006}, doi = {10.1016/j.crma.2006.05.014}, language = {en}, }
TY - JOUR AU - Peter Bürgisser AU - Felipe Cucker AU - Martin Lotz TI - General formulas for the smoothed analysis of condition numbers JO - Comptes Rendus. Mathématique PY - 2006 SP - 145 EP - 150 VL - 343 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2006.05.014 LA - en ID - CRMATH_2006__343_2_145_0 ER -
Peter Bürgisser; Felipe Cucker; Martin Lotz. General formulas for the smoothed analysis of condition numbers. Comptes Rendus. Mathématique, Volume 343 (2006) no. 2, pp. 145-150. doi : 10.1016/j.crma.2006.05.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.014/
[1] P. Bürgisser, F. Cucker, M. Lotz, Smoothed analysis of complex conic condition numbers, Preprint, 2006
[2] On the kinematic formula in integral geometry, J. Math. Mech., Volume 16 (1966), pp. 101-118
[3] The probability that a numerical analysis problem is difficult, Math. Comp., Volume 50 (1988), pp. 449-480
[4] The approximation of one matrix by another of lower rank, Psychometrika, Volume 1 (1936), pp. 211-218
[5] Tubes, Addison-Wesley Publishing Company Advanced Book Program, Addison-Wesley, Redwood City, CA, 1990
[6] The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc., Volume 106 (1993) no. 509, p. vi+69
[7] On the Betti numbers of real varieties, Proc. Amer. Math. Soc., Volume 15 (1964), pp. 275-280
[8] Integral Geometry and Geometric Probability, Addison-Wesley Publishing Co., Reading, MA, 1976
[9] D.A. Spielman, S.-H. Teng, Smoothed analysis of algorithms, in: Proceedings of the International Congress of Mathematicians, vol. I, 2002, pp. 597–606
[10] A Comprehensive Introduction to Differential Geometry, vol. III, Publish or Perish Inc., Wilmington, DE, 1979
[11] On the volume of tubes, Amer. J. Math., Volume 61 (1939) no. 2, pp. 461-472
[12] Note on matrices with a very ill-conditioned eigenproblem, Numer. Math., Volume 19 (1972), pp. 176-178
Cité par Sources :
Commentaires - Politique