Comptes Rendus
Mathematical Analysis
A new characterization of Sobolev spaces
Comptes Rendus. Mathématique, Volume 343 (2006) no. 2, pp. 75-80.

Our main result is the following: Let gLp(RN), 1<p<+, be such that

supnNRNRN|g(x)g(y)|>δnδnp|xy|N+pdxdy<+,
for some arbitrary sequence of positive numbers (δn)nN with limnδn=0. Then gW1,p(RN).

This extends a result from H.-M. Nguyen (2006).

Notre résultat principal est le suivant : Soit une fonction gLp(RN), 1<p<+, telle que

supnNRNRN|g(x)g(y)|>δnδnp|xy|N+pdxdy<+,
(δn)nN est une suite arbitraire positive telle que limnδn=0. Alors gW1,p(RN).

Cela étend un résultat de H.-M. Nguyen (2006).

Received:
Published online:
DOI: 10.1016/j.crma.2006.05.021

Jean Bourgain 1; Hoai-Minh Nguyen 2

1 Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA
2 Laboratoire Jacques-Louis Lions, université Pierre et Marie Curie, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRMATH_2006__343_2_75_0,
     author = {Jean Bourgain and Hoai-Minh Nguyen},
     title = {A new characterization of {Sobolev} spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {75--80},
     publisher = {Elsevier},
     volume = {343},
     number = {2},
     year = {2006},
     doi = {10.1016/j.crma.2006.05.021},
     language = {en},
}
TY  - JOUR
AU  - Jean Bourgain
AU  - Hoai-Minh Nguyen
TI  - A new characterization of Sobolev spaces
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 75
EP  - 80
VL  - 343
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2006.05.021
LA  - en
ID  - CRMATH_2006__343_2_75_0
ER  - 
%0 Journal Article
%A Jean Bourgain
%A Hoai-Minh Nguyen
%T A new characterization of Sobolev spaces
%J Comptes Rendus. Mathématique
%D 2006
%P 75-80
%V 343
%N 2
%I Elsevier
%R 10.1016/j.crma.2006.05.021
%G en
%F CRMATH_2006__343_2_75_0
Jean Bourgain; Hoai-Minh Nguyen. A new characterization of Sobolev spaces. Comptes Rendus. Mathématique, Volume 343 (2006) no. 2, pp. 75-80. doi : 10.1016/j.crma.2006.05.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.021/

[1] R.A. Adams Sobolev Spaces, Academic Press, New York, 1975

[2] H. Brezis Analyse Fonctionnelle. Théorie et applications, Mathématiques appliquées pour la maîtrise, Dunod, 2002

[3] J. Bourgain; H. Brezis; P. Mironescu Another look at Sobolev spaces (J.L. Menaldi; E. Rofman; A. Sulem, eds.), Optimal Control and Partial Differential Equations, A Volume in Honour of A. Bensoussan's 60th Birthday, IOS Press, 2001, pp. 439-455

[4] L. Evans; R.F. Gariepy Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, 1992

[5] H.M. Nguyen Some new characterizations of Sobolev spaces, J. Funct. Anal., Volume 237 (2006), pp. 689-720

Cited by Sources:

Comments - Policy