[Attraction globale vers des ondes solitaires pour l'équation de Klein–Gordon couplé à un oscillateur non linéaire]
The long-time asymptotics are analyzed for all finite energy solutions to a model
On s'intéresse aux solutions d'énergie finie d'une équation non linéaire de Klein–Gordon
Accepté le :
Publié le :
Alexander I. Komech 1 ; Andrew A. Komech 2
@article{CRMATH_2006__343_2_111_0, author = {Alexander I. Komech and Andrew A. Komech}, title = {On the global attraction to solitary waves for the {Klein{\textendash}Gordon} equation coupled to a nonlinear oscillator}, journal = {Comptes Rendus. Math\'ematique}, pages = {111--114}, publisher = {Elsevier}, volume = {343}, number = {2}, year = {2006}, doi = {10.1016/j.crma.2006.06.009}, language = {en}, }
TY - JOUR AU - Alexander I. Komech AU - Andrew A. Komech TI - On the global attraction to solitary waves for the Klein–Gordon equation coupled to a nonlinear oscillator JO - Comptes Rendus. Mathématique PY - 2006 SP - 111 EP - 114 VL - 343 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2006.06.009 LA - en ID - CRMATH_2006__343_2_111_0 ER -
%0 Journal Article %A Alexander I. Komech %A Andrew A. Komech %T On the global attraction to solitary waves for the Klein–Gordon equation coupled to a nonlinear oscillator %J Comptes Rendus. Mathématique %D 2006 %P 111-114 %V 343 %N 2 %I Elsevier %R 10.1016/j.crma.2006.06.009 %G en %F CRMATH_2006__343_2_111_0
Alexander I. Komech; Andrew A. Komech. On the global attraction to solitary waves for the Klein–Gordon equation coupled to a nonlinear oscillator. Comptes Rendus. Mathématique, Volume 343 (2006) no. 2, pp. 111-114. doi : 10.1016/j.crma.2006.06.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.06.009/
[1] Attractors of Evolution Equations, Studies in Mathematics and its Applications, vol. 25, North-Holland Publishing Co., Amsterdam, 1992
[2] Scattering for the nonlinear Schrödinger equation: states that are close to a soliton, Algebra i Analiz, Volume 4 (1992) no. 6, pp. 63-102
[3] Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., Volume 54 (2001) no. 9, pp. 1110-1145
[4] Time decay of finite energy solutions of the nonlinear Klein–Gordon and Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., Volume 43 (1985) no. 4, pp. 399-442
[5] The Analysis of Linear Partial Differential Operators. I, Springer-Verlag, Berlin, 1990 (Springer Study Edition)
[6] Long-time behavior of solutions to nonlinear evolution equations, Arch. Rational Mech. Anal., Volume 78 (1982) no. 1, pp. 73-98
[7] Stabilization of the interaction of a string with a nonlinear oscillator, Moscow Univ. Math. Bull., Volume 46 (1991) no. 6, pp. 34-39
[8] On transitions to stationary states in one-dimensional nonlinear wave equations, Arch. Rational Mech. Anal., Volume 149 (1999) no. 3, pp. 213-228
[9] Long-time asymptotics for the coupled Maxwell–Lorentz equations, Comm. Partial Differential Equations, Volume 25 (2000) no. 3–4, pp. 559-584
[10] Long-time asymptotics for a classical particle interacting with a scalar wave field, Comm. Partial Differential Equations, Volume 22 (1997) no. 1–2, pp. 307-335
[11] Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math., Volume 25 (1972), pp. 1-31
[12] Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys., Volume 133 (1990) no. 1, pp. 119-146
[13] Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., Volume 136 (1999) no. 1, pp. 9-74
[14] Decay and asymptotics for
[15] Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997
[16] The zeros of certain integral functions, Proc. London Math. Soc., Volume 25 (1926), pp. 283-302
Cité par Sources :
Commentaires - Politique