[Un résultat d'existence à un problème dynamique de contact sans frottement en élasticité]
Le but de ce travail est de présenter un résultat d'existence au problème dynamique de contact sans frottement entre un corps élastique et une fondation rigide. La preuve est basée sur cinq étapes fondamentales : une discrétisation en temps du problème qui mène à un problème à solution unique ; la construction de plusieurs séquences ; le traitement de la condition de contact au moyen d'un multiplicateur de Lagrange dont les propriétés d'orthogonalité nous permettent d'obtenir des estimations à priori et donc, obtenir la convergence des séquences ; finalement on passe à la limite pour obtenir une solution faible du problème continu.
The purpose of this work is to present an existence result for the dynamic frictionless contact problem between an elastic body and a rigid foundation. The proof is based on five fundamental steps: a discretization in time which leads to a discretized problem with unique solution; the construction of functions approximating a solution of the problem; the treatment of the contact condition by means of a Lagrange multiplier whose orthogonality properties allow us to get a priori estimates; the convergence of said functions and, finally, the pass to the limit obtaining a weak solution of the continuous problem.
Accepté le :
Publié le :
María Teresa Cao 1 ; Peregrina Quintela 1
@article{CRMATH_2006__343_5_355_0, author = {Mar{\'\i}a Teresa Cao and Peregrina Quintela}, title = {Existence of solutions for a dynamic {Signorini's} contact problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {355--360}, publisher = {Elsevier}, volume = {343}, number = {5}, year = {2006}, doi = {10.1016/j.crma.2006.07.004}, language = {en}, }
María Teresa Cao; Peregrina Quintela. Existence of solutions for a dynamic Signorini's contact problem. Comptes Rendus. Mathématique, Volume 343 (2006) no. 5, pp. 355-360. doi : 10.1016/j.crma.2006.07.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.07.004/
[1] Existence of a solution for a Signorini contact problem for Maxwell–Norton materials, IMA J. Appl. Math., Volume 67 (2002), pp. 525-549
[2] M.T. Cao, P. Quintela, Existence result for a dynamic frictionless contact problem in elasticity, Preprint of the Department of Applied Mathematic, Universidade de Santiago de Compostela, 66, 2005. Mathematical Models and Methods in Applied Sciences, submitted for publication
[3] Existence of solutions of a dynamic Signorini's problem with nonlocal friction in viscoelasticity, Z. Angew. Math. Phys., Volume 53 (2002), pp. 1099-1109
[4] Existence of a solution to a dynamic unilateral contact problem for a cracked viscoelastic body, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 341-346
[5] Les inéquations en mécanique et en physique, Springer-Verlag, 1976
[6] Dynamical contact problems for bodies with a singular memory, Boll. Unione Math. Ital., Volume 7 (1995) no. 9-A, pp. 581-592
[7] A boundary thin obstacle problem for a wave equation, Comm. Partial Differential Equations, Volume 14 (1989), pp. 1011-1026
[8] A wave problem in a half-space with a unilateral constraint at the boundary, J. Differential Equations, Volume 53 (1984), pp. 309-361
[9] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, 1969
[10] Existence and uniqueness results for dynamic contact problems with nonlinear normal friction and interface laws, Nonlinear Anal., Volume 11 (1987), pp. 407-428
Cité par Sources :
Commentaires - Politique