[Analyse de modèles de dynamique de populations sous l'influence de perturbations externes]
Cette Note a pour objet l'étude des états stationnaires et du comportement asymptotique d'équations de réaction-diffusion avec coefficients hétérogènes en espace, auxquelles nous ajoutons un terme de perturbation stationnaire ou périodique en temps. Nos résultats peuvent s'interpreter en termes de prélèvement maximal supportable par une population. Nous soulignons cet aspect à l'aide d'un calcul numérique.
In this note, we describe the stationary equilibria and the asymptotic behaviour of an heterogeneous logistic reaction-diffusion equation under the influence of autonomous or time-periodic forcing terms. We show that the study of the asymptotic behaviour in the time-periodic forcing case can be reduced to the autonomous one, the last one being described in function of the ‘size’ of the external perturbation. Our results can be interpreted in terms of maximal sustainable yields from populations. We briefly discuss this last aspect through a numerical computation.
Publié le :
Mickaël D. Chekroun 1 ; Lionel J. Roques 2
@article{CRMATH_2006__343_5_307_0, author = {Micka\"el D. Chekroun and Lionel J. Roques}, title = {Models of population dynamics under the influence of external perturbations: mathematical results}, journal = {Comptes Rendus. Math\'ematique}, pages = {307--310}, publisher = {Elsevier}, volume = {343}, number = {5}, year = {2006}, doi = {10.1016/j.crma.2006.07.012}, language = {en}, }
TY - JOUR AU - Mickaël D. Chekroun AU - Lionel J. Roques TI - Models of population dynamics under the influence of external perturbations: mathematical results JO - Comptes Rendus. Mathématique PY - 2006 SP - 307 EP - 310 VL - 343 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2006.07.012 LA - en ID - CRMATH_2006__343_5_307_0 ER -
%0 Journal Article %A Mickaël D. Chekroun %A Lionel J. Roques %T Models of population dynamics under the influence of external perturbations: mathematical results %J Comptes Rendus. Mathématique %D 2006 %P 307-310 %V 343 %N 5 %I Elsevier %R 10.1016/j.crma.2006.07.012 %G en %F CRMATH_2006__343_5_307_0
Mickaël D. Chekroun; Lionel J. Roques. Models of population dynamics under the influence of external perturbations: mathematical results. Comptes Rendus. Mathématique, Volume 343 (2006) no. 5, pp. 307-310. doi : 10.1016/j.crma.2006.07.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.07.012/
[1] Analysis of the periodically fragmented environment model: I–Species persistence, J. Math. Biol., Volume 51 (2005) no. 1, pp. 75-113
[2] M. Chekroun, L. Roques, Spatialized harvesting models. The influence of seasonal variations, in preparation
[3] The advance of advantageous genes, Ann. Eugenics, Volume 7 (1937), pp. 335-369
[4] Averaging in infinite dimensions, J. Integral Equations Appl., Volume 2 (1990) no. 4, pp. 463-494
[5] Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983
[6] L. Roques, M. Chekroun, Harvesting models in heterogeneous environments, Preprint, 2006
[7] Dynamics of Evolutionary Equations, Springer-Verlag, 2002
[8] Traveling periodic waves in heterogeneous environments, Theor. Population Biol., Volume 30 (1986), pp. 143-160
Cité par Sources :
Commentaires - Politique