[Relaxation d'un problème d'optimisation de forme pour l'équation des ondes]
Le problème d'optimisation de la forme et de la position de la zone de dissipation pour l'équation des ondes peut être mal posé. En utilisant une reformulation variationnelle et la théorie de la mesure de Young, on présente dans cette note une méthode générale pour relaxer ce type de problème. A partir de la mesure de Young optimal associée au problème relaxé bien posé, on obtient des informations concernant les suites minimisantes pour le problème original ainsi que des propriétés de continuité sur la fonction coût relaxée.
The problem of determining the optimal damping set for the stabilization of the wave equation may be not well-posed. By means of a vector variational reformulation and use of gradient Young measures, we present a general methodology to relax this kind of problems. From the optimal Young measure associated with the relaxed problem, we obtain information concerning minimizing sequences for the original problem as well as continuity properties of the relaxed cost function.
Accepté le :
Publié le :
Arnaud Münch 1 ; Pablo Pedregal 2 ; Francisco Periago 3
@article{CRMATH_2006__343_5_371_0, author = {Arnaud M\"unch and Pablo Pedregal and Francisco Periago}, title = {A variational approach to a shape design problem for the wave equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {371--376}, publisher = {Elsevier}, volume = {343}, number = {5}, year = {2006}, doi = {10.1016/j.crma.2006.07.013}, language = {en}, }
TY - JOUR AU - Arnaud Münch AU - Pablo Pedregal AU - Francisco Periago TI - A variational approach to a shape design problem for the wave equation JO - Comptes Rendus. Mathématique PY - 2006 SP - 371 EP - 376 VL - 343 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2006.07.013 LA - en ID - CRMATH_2006__343_5_371_0 ER -
Arnaud Münch; Pablo Pedregal; Francisco Periago. A variational approach to a shape design problem for the wave equation. Comptes Rendus. Mathématique, Volume 343 (2006) no. 5, pp. 371-376. doi : 10.1016/j.crma.2006.07.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.07.013/
[1] Designing for optimal energy absorption: the damped wave equation, Int. Ser. Numer. Math., vol. 126, Birkhäuser, 1998, pp. 103-109
[2] Variational formulation of optimal damping designs, Contemp. Math., Volume 209 (1997), pp. 95-114
[3] Optimal shape and position of the actuators for the stabilization of a string, Systems Control Lett., Volume 48 (2003), pp. 199-209
[4] A. Münch, Optimal internal stabilization of a damped wave equation by a level set approach, Prépublication du laboratoire de mathématiques de Besançon 01/05, 2005
[5] A. Münch, P. Pedregal, F. Periago, Optimal design of the damping set for the stabilization of the wave equation, J. Differential Equations, in press
[6] Parametrized Measures and Variational Principles, Birkhäuser, 1997
[7] Vector variational problems and applications to optimal design, ESAIM:COCV, Volume 11 (2005), pp. 357-381
Cité par Sources :
Commentaires - Politique