Comptes Rendus
Calculus of Variations
Simple proof of two-well rigidity
[Une démonstration simple d'une estimation de rigidité pour deux puits]
Comptes Rendus. Mathématique, Volume 343 (2006) no. 5, pp. 367-370.

We give a short proof of the rigidity estimate of Müller and Chaudhuri for two strongly incompatible wells. Making strong use of the arguments of Ball and James our approach shows that incompatibility for gradient Young measures can be used to reduce rigidity estimates for several wells to one-well rigidity.

Nous donnons une démonstration simple d'une estimation de rigidité de Müller et Chaudhuri pour deux puits fortement incompatibles. Nous employons un argument de Ball et James pour montrer que l'incompatibilité pour les mesures de Young engendrées par des gradients permet de réduire les estimations de rigidité pour plusieurs puits à celles pour un puit.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.07.008

Camillo De Lellis 1 ; László Székelyhidi 2

1 Institut für Mathematik, Universität Zürich, CH-8057 Zürich
2 Departement Mathematik, ETH Zürich, CH-8092 Zürich
@article{CRMATH_2006__343_5_367_0,
     author = {Camillo De Lellis and L\'aszl\'o Sz\'ekelyhidi},
     title = {Simple proof of two-well rigidity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {367--370},
     publisher = {Elsevier},
     volume = {343},
     number = {5},
     year = {2006},
     doi = {10.1016/j.crma.2006.07.008},
     language = {en},
}
TY  - JOUR
AU  - Camillo De Lellis
AU  - László Székelyhidi
TI  - Simple proof of two-well rigidity
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 367
EP  - 370
VL  - 343
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2006.07.008
LA  - en
ID  - CRMATH_2006__343_5_367_0
ER  - 
%0 Journal Article
%A Camillo De Lellis
%A László Székelyhidi
%T Simple proof of two-well rigidity
%J Comptes Rendus. Mathématique
%D 2006
%P 367-370
%V 343
%N 5
%I Elsevier
%R 10.1016/j.crma.2006.07.008
%G en
%F CRMATH_2006__343_5_367_0
Camillo De Lellis; László Székelyhidi. Simple proof of two-well rigidity. Comptes Rendus. Mathématique, Volume 343 (2006) no. 5, pp. 367-370. doi : 10.1016/j.crma.2006.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.07.008/

[1] J.M. Ball, R.D. James, Incompatible sets of gradients and metastability, in preparation

[2] N. Chaudhuri; S. Müller Rigidity estimate for two incompatible wells, Calc. Var. Partial Differential Equations, Volume 19 (2004) no. 4, pp. 379-390

[3] N. Chaudhuri, S. Müller, Scaling of the energy for thin martensitic films, Preprint MPI-MIS Leipzig 59, 2004

[4] S. Conti; D. Faraco; F. Maggi A new approach to counterexamples to L1 estimates: Korn's inequality, geometric rigidity, and regularity for gradients of separately convex functions, Arch. Ration. Mech. Anal., Volume 175 (2005), pp. 287-300

[5] S. Conti; B. Schweizer Rigidity and Γ-convergence for solid-solid phase transitions with SO(2)-invariance, Comm. Pure Appl. Math., Volume 59 (2006), pp. 830-868

[6] G. Friesecke; R.D. James; S. Müller A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002) no. 11, pp. 1461-1506

[7] M. de Guzmán Differentiation of Integrals in Rn, Lecture Notes in Mathematics, vol. 481, Springer-Verlag, 1975

[8] J.P. Matos Young measures and the absence of fine microstructures in a class of phase transitions, Eur. J. Appl. Math., Volume 3 (1992) no. 1, pp. 31-54

  • Edoardo Giovanni Tolotti On the hierarchy of plate models for a singularly perturbed multi-well nonlinear elastic energy, Journal of Nonlinear Science, Volume 35 (2025) no. 4, p. 46 (Id/No 77) | DOI:10.1007/s00332-025-10174-3 | Zbl:8061628
  • Stefano Almi; Maicol Caponi; Manuel Friedrich; Francesco Solombrino Geometric rigidity on Sobolev spaces with variable exponent and applications, NoDEA. Nonlinear Differential Equations and Applications, Volume 32 (2025) no. 1, p. 50 (Id/No 12) | DOI:10.1007/s00030-024-01016-4 | Zbl:7974590
  • Xavier Lamy; Andrew Lorent; Guanying Peng Quantitative Rigidity of Differential Inclusions in Two Dimensions, International Mathematics Research Notices, Volume 2024 (2024) no. 8, p. 6325 | DOI:10.1093/imrn/rnad108
  • Bogdan Raiţă; Angkana Rüland; Camillo Tissot On scaling properties for two-state problems and for a singularly perturbed T3 structure, Acta Applicandae Mathematicae, Volume 184 (2023), p. 50 (Id/No 5) | DOI:10.1007/s10440-023-00557-7 | Zbl:1514.35428
  • Marco Cicalese; Matteo Focardi; Caterina Ida Zeppieri Phase-field approximation of functionals defined on piecewise-rigid maps, Journal of Nonlinear Science, Volume 31 (2021) no. 5, p. 25 (Id/No 78) | DOI:10.1007/s00332-021-09733-1 | Zbl:1475.49019
  • Elisa Davoli; Manuel Friedrich Two-well rigidity and multidimensional sharp-interface limits for solid-solid phase transitions, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 2, p. 47 (Id/No 44) | DOI:10.1007/s00526-020-1699-5 | Zbl:1432.74182
  • Rita Ferreira; Elvira Zappale Bending-torsion moments in thin multi-structures in the context of nonlinear elasticity, Communications on Pure and Applied Analysis, Volume 19 (2020) no. 3, pp. 1747-1793 | DOI:10.3934/cpaa.2020072 | Zbl:1431.74023
  • Roberto Alicandro; Gianni Dal Maso; Giuliano Lazzaroni; Mariapia Palombaro Derivation of a linearised elasticity model from singularly perturbed multiwell energy functionals, Archive for Rational Mechanics and Analysis, Volume 230 (2018) no. 1, pp. 1-45 | DOI:10.1007/s00205-018-1240-6 | Zbl:1398.35229
  • Andrew Lorent Rigidity of pairs of quasiregular mappings whose symmetric part of gradient are close, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 33 (2016) no. 1, pp. 23-65 | DOI:10.1016/j.anihpc.2014.08.003 | Zbl:1328.30014
  • J. M. Ball; R. D. James Incompatible sets of gradients and metastability, Archive for Rational Mechanics and Analysis, Volume 218 (2015) no. 3, pp. 1363-1416 | DOI:10.1007/s00205-015-0883-9 | Zbl:1343.49041
  • Luca Granieri; Francesco Maddalena A metric approach to elastic reformations, Acta Applicandae Mathematicae, Volume 133 (2014) no. 1, pp. 153-185 | DOI:10.1007/s10440-013-9862-z | Zbl:1316.49051
  • Carlos Mora-Corral Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 348 (2010) no. 17-18, pp. 1045-1048 | DOI:10.1016/j.crma.2010.09.005 | Zbl:1426.74186
  • Milena Chermisi; Sergio Conti Multiwell Rigidity in Nonlinear Elasticity, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 5, p. 1986 | DOI:10.1137/080714968
  • Bernd Kirchheim; László Székelyhidi On the gradient set of Lipschitz maps, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2008 (2008) no. 625 | DOI:10.1515/crelle.2008.095
  • Peter Hornung A Γ-Convergence Result for Thin Martensitic Films in Linearized Elasticity, SIAM Journal on Mathematical Analysis, Volume 40 (2008) no. 1, p. 186 | DOI:10.1137/070683167
  • Antonin Chambolle; Alessandro Giacomini; Marcello Ponsiglione Piecewise rigidity, Journal of Functional Analysis, Volume 244 (2007) no. 1, p. 134 | DOI:10.1016/j.jfa.2006.11.006
  • Nathan Albin; Sergio Conti; Vincenzo Nesi Improved bounds for composites and rigidity of gradient fields, Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, Volume 463 (2007) no. 2084, pp. 2031-2048 | DOI:10.1098/rspa.2007.1863 | Zbl:1129.74038

Cité par 17 documents. Sources : Crossref, zbMATH

Commentaires - Politique