[Une démonstration simple d'une estimation de rigidité pour deux puits]
We give a short proof of the rigidity estimate of Müller and Chaudhuri for two strongly incompatible wells. Making strong use of the arguments of Ball and James our approach shows that incompatibility for gradient Young measures can be used to reduce rigidity estimates for several wells to one-well rigidity.
Nous donnons une démonstration simple d'une estimation de rigidité de Müller et Chaudhuri pour deux puits fortement incompatibles. Nous employons un argument de Ball et James pour montrer que l'incompatibilité pour les mesures de Young engendrées par des gradients permet de réduire les estimations de rigidité pour plusieurs puits à celles pour un puit.
Accepté le :
Publié le :
Camillo De Lellis 1 ; László Székelyhidi 2
@article{CRMATH_2006__343_5_367_0, author = {Camillo De Lellis and L\'aszl\'o Sz\'ekelyhidi}, title = {Simple proof of two-well rigidity}, journal = {Comptes Rendus. Math\'ematique}, pages = {367--370}, publisher = {Elsevier}, volume = {343}, number = {5}, year = {2006}, doi = {10.1016/j.crma.2006.07.008}, language = {en}, }
Camillo De Lellis; László Székelyhidi. Simple proof of two-well rigidity. Comptes Rendus. Mathématique, Volume 343 (2006) no. 5, pp. 367-370. doi : 10.1016/j.crma.2006.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.07.008/
[1] J.M. Ball, R.D. James, Incompatible sets of gradients and metastability, in preparation
[2] Rigidity estimate for two incompatible wells, Calc. Var. Partial Differential Equations, Volume 19 (2004) no. 4, pp. 379-390
[3] N. Chaudhuri, S. Müller, Scaling of the energy for thin martensitic films, Preprint MPI-MIS Leipzig 59, 2004
[4] A new approach to counterexamples to
[5] Rigidity and Γ-convergence for solid-solid phase transitions with
[6] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002) no. 11, pp. 1461-1506
[7] Differentiation of Integrals in
[8] Young measures and the absence of fine microstructures in a class of phase transitions, Eur. J. Appl. Math., Volume 3 (1992) no. 1, pp. 31-54
- On the hierarchy of plate models for a singularly perturbed multi-well nonlinear elastic energy, Journal of Nonlinear Science, Volume 35 (2025) no. 4, p. 46 (Id/No 77) | DOI:10.1007/s00332-025-10174-3 | Zbl:8061628
- Geometric rigidity on Sobolev spaces with variable exponent and applications, NoDEA. Nonlinear Differential Equations and Applications, Volume 32 (2025) no. 1, p. 50 (Id/No 12) | DOI:10.1007/s00030-024-01016-4 | Zbl:7974590
- Quantitative Rigidity of Differential Inclusions in Two Dimensions, International Mathematics Research Notices, Volume 2024 (2024) no. 8, p. 6325 | DOI:10.1093/imrn/rnad108
- On scaling properties for two-state problems and for a singularly perturbed
structure, Acta Applicandae Mathematicae, Volume 184 (2023), p. 50 (Id/No 5) | DOI:10.1007/s10440-023-00557-7 | Zbl:1514.35428 - Phase-field approximation of functionals defined on piecewise-rigid maps, Journal of Nonlinear Science, Volume 31 (2021) no. 5, p. 25 (Id/No 78) | DOI:10.1007/s00332-021-09733-1 | Zbl:1475.49019
- Two-well rigidity and multidimensional sharp-interface limits for solid-solid phase transitions, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 2, p. 47 (Id/No 44) | DOI:10.1007/s00526-020-1699-5 | Zbl:1432.74182
- Bending-torsion moments in thin multi-structures in the context of nonlinear elasticity, Communications on Pure and Applied Analysis, Volume 19 (2020) no. 3, pp. 1747-1793 | DOI:10.3934/cpaa.2020072 | Zbl:1431.74023
- Derivation of a linearised elasticity model from singularly perturbed multiwell energy functionals, Archive for Rational Mechanics and Analysis, Volume 230 (2018) no. 1, pp. 1-45 | DOI:10.1007/s00205-018-1240-6 | Zbl:1398.35229
- Rigidity of pairs of quasiregular mappings whose symmetric part of gradient are close, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 33 (2016) no. 1, pp. 23-65 | DOI:10.1016/j.anihpc.2014.08.003 | Zbl:1328.30014
- Incompatible sets of gradients and metastability, Archive for Rational Mechanics and Analysis, Volume 218 (2015) no. 3, pp. 1363-1416 | DOI:10.1007/s00205-015-0883-9 | Zbl:1343.49041
- A metric approach to elastic reformations, Acta Applicandae Mathematicae, Volume 133 (2014) no. 1, pp. 153-185 | DOI:10.1007/s10440-013-9862-z | Zbl:1316.49051
- Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 348 (2010) no. 17-18, pp. 1045-1048 | DOI:10.1016/j.crma.2010.09.005 | Zbl:1426.74186
- Multiwell Rigidity in Nonlinear Elasticity, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 5, p. 1986 | DOI:10.1137/080714968
- On the gradient set of Lipschitz maps, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2008 (2008) no. 625 | DOI:10.1515/crelle.2008.095
- A
-Convergence Result for Thin Martensitic Films in Linearized Elasticity, SIAM Journal on Mathematical Analysis, Volume 40 (2008) no. 1, p. 186 | DOI:10.1137/070683167 - Piecewise rigidity, Journal of Functional Analysis, Volume 244 (2007) no. 1, p. 134 | DOI:10.1016/j.jfa.2006.11.006
- Improved bounds for composites and rigidity of gradient fields, Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, Volume 463 (2007) no. 2084, pp. 2031-2048 | DOI:10.1098/rspa.2007.1863 | Zbl:1129.74038
Cité par 17 documents. Sources : Crossref, zbMATH
Commentaires - Politique