Nous définissons de nouvelles classes d'ensembles à grande intersection, qui généralisent celles introduites par K. Falconer. Ces classes contiennent les ensembles qui sont définis à partir de systèmes d'ubiquité homogènes et hétérogènes. De tels ensembles jouent un rôle important en approximation diophantienne et en analyse multifractale.
We define new classes of sets with large intersection, which generalize those introduced by K. Falconer. These classes contain the sets which are defined using homogeneous and heterogeneous ubiquitous systems. Such sets play an important role in Diophantine approximation and in multifractal analysis.
Accepté le :
Publié le :
Arnaud Durand 1
@article{CRMATH_2006__343_7_447_0, author = {Arnaud Durand}, title = {Ensembles \`a grande intersection et ubiquit\'e}, journal = {Comptes Rendus. Math\'ematique}, pages = {447--452}, publisher = {Elsevier}, volume = {343}, number = {7}, year = {2006}, doi = {10.1016/j.crma.2006.09.002}, language = {fr}, }
Arnaud Durand. Ensembles à grande intersection et ubiquité. Comptes Rendus. Mathématique, Volume 343 (2006) no. 7, pp. 447-452. doi : 10.1016/j.crma.2006.09.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.002/
[1] Random wavelet series, Comm. Math. Phys., Volume 227 (2002), pp. 483-514
[2] J. Barral, S. Seuret, Heterogeneous ubiquitous systems in and Hausdorff dimension, prépublication, 2004
[3] V.V. Beresnevich, S.L. Velani, A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures, à paraître dans Ann. Math., 2005
[4] Approximation by Algebraic Numbers, Cambridge University Press, 2004
[5] A. Durand, Sets with large intersection and ubiquity, prépublication, 2006
[6] A. Durand, Ubiquitous systems and metric number theory, prépublication, 2006
[7] Sets with large intersection properties, J. London Math. Soc., Volume 49 (1994) no. 2, pp. 267-280
[8] Metric Number Theory, Clarendon Press, NY, 1998
[9] The multifractal nature of Lévy processes, Probab. Theory Related Fields, Volume 114 (1999), pp. 207-227
[10] On lacunary wavelet series, Ann. Appl. Probab., Volume 10 (2000) no. 1, pp. 313-329
[11] Metrical theorems on fractional parts of sequences, Trans. Amer. Math. Soc., Volume 110 (1964), pp. 493-518
Cité par Sources :
Commentaires - Politique