[Sommes de masses de Dirac et ubiquité conditionnée.]
Multifractal formalisms hold for certain classes of atomless measures μ obtained as limits of multiplicative processes. This naturally leads us to ask whether non trivial discontinuous measures obey such formalisms. This is the case for a new kind of measures, whose construction combines additive and multiplicative chaos. This class is defined by
Les formalismes multifractals sont vérifiés par certaines classes de mesures diffuses μ limites de processus multiplicatifs. Cela pose naturellement la question de savoir s'ils le sont encore pour des mesures non diffuses non triviales. C'est effectivement le cas pour des mesures d'un type nouveau, qui mêlent chaos additifs et multiplicatifs. Cette classe de mesures est définie par
Accepté le :
Publié le :
Julien Barral 1 ; Stéphane Seuret 1
@article{CRMATH_2004__339_11_787_0, author = {Julien Barral and St\'ephane Seuret}, title = {Sums of {Dirac} masses and conditioned ubiquity}, journal = {Comptes Rendus. Math\'ematique}, pages = {787--792}, publisher = {Elsevier}, volume = {339}, number = {11}, year = {2004}, doi = {10.1016/j.crma.2004.10.001}, language = {en}, }
Julien Barral; Stéphane Seuret. Sums of Dirac masses and conditioned ubiquity. Comptes Rendus. Mathématique, Volume 339 (2004) no. 11, pp. 787-792. doi : 10.1016/j.crma.2004.10.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.10.001/
[1] J. Barral, S. Seuret, From multifractal measures to multifractal wavelet series, Preprint, 2002
[2] J. Barral, S. Seuret, Combining multifractal additive and multiplicative chaos, Commun. Math. Phys., in press
[3] Functions with multifractal variations, Math. Nachr., Volume 274–275 (2004), pp. 3-18
[4] J. Barral, S. Seuret, Heterogeneous ubiquitous systems in
[5] J. Barral, S. Seuret, Speed of renewal of level sets for statistically self-similar measures, Preprint, 2004
[6] On the multifractal analysis of measures, J. Statist. Phys., Volume 66 (1992) no. 3–4, pp. 775-790
[7] Patterson measure and ubiquity, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 20 (1995) no. 1, pp. 37-60
[8] The fractional dimension of a set defined by decimal properties, Quart. J. Math. Oxford Ser., Volume 20 (1949), pp. 31-36
[9] Exposants de Hölder en des points donnés et coefficients d'ondelettes, C. R. Acad. Sci. Paris, Ser. I, Volume 308 (1989), pp. 79-81
[10] The multifractal nature of Lévy processes, Probab. Theory Related Fields, Volume 114 (1999) no. 2, pp. 207-227
[11] On lacunary wavelet series, Ann. Appl. Probab., Volume 10 (2000) no. 1, pp. 313-329
[12] Sur la série de Fourier, C. R. Acad. Sci. Paris, Volume 92 (1881), pp. 228-230
[13] Some Random Series of Functions, Cambridge Univ. Press, 1985
[14] Ondelettes et Opérateurs, Hermann, 1990
[15] A multifractal formalism, Adv. Math., Volume 116 (1995), pp. 92-195
Cité par Sources :
Commentaires - Politique