[Sommes de masses de Dirac et ubiquité conditionnée.]
Les formalismes multifractals sont vérifiés par certaines classes de mesures diffuses μ limites de processus multiplicatifs. Cela pose naturellement la question de savoir s'ils le sont encore pour des mesures non diffuses non triviales. C'est effectivement le cas pour des mesures d'un type nouveau, qui mêlent chaos additifs et multiplicatifs. Cette classe de mesures est définie par
Multifractal formalisms hold for certain classes of atomless measures μ obtained as limits of multiplicative processes. This naturally leads us to ask whether non trivial discontinuous measures obey such formalisms. This is the case for a new kind of measures, whose construction combines additive and multiplicative chaos. This class is defined by
Accepté le :
Publié le :
Julien Barral 1 ; Stéphane Seuret 1
@article{CRMATH_2004__339_11_787_0, author = {Julien Barral and St\'ephane Seuret}, title = {Sums of {Dirac} masses and conditioned ubiquity}, journal = {Comptes Rendus. Math\'ematique}, pages = {787--792}, publisher = {Elsevier}, volume = {339}, number = {11}, year = {2004}, doi = {10.1016/j.crma.2004.10.001}, language = {en}, }
Julien Barral; Stéphane Seuret. Sums of Dirac masses and conditioned ubiquity. Comptes Rendus. Mathématique, Volume 339 (2004) no. 11, pp. 787-792. doi : 10.1016/j.crma.2004.10.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.10.001/
[1] J. Barral, S. Seuret, From multifractal measures to multifractal wavelet series, Preprint, 2002
[2] J. Barral, S. Seuret, Combining multifractal additive and multiplicative chaos, Commun. Math. Phys., in press
[3] Functions with multifractal variations, Math. Nachr., Volume 274–275 (2004), pp. 3-18
[4] J. Barral, S. Seuret, Heterogeneous ubiquitous systems in
[5] J. Barral, S. Seuret, Speed of renewal of level sets for statistically self-similar measures, Preprint, 2004
[6] On the multifractal analysis of measures, J. Statist. Phys., Volume 66 (1992) no. 3–4, pp. 775-790
[7] Patterson measure and ubiquity, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 20 (1995) no. 1, pp. 37-60
[8] The fractional dimension of a set defined by decimal properties, Quart. J. Math. Oxford Ser., Volume 20 (1949), pp. 31-36
[9] Exposants de Hölder en des points donnés et coefficients d'ondelettes, C. R. Acad. Sci. Paris, Ser. I, Volume 308 (1989), pp. 79-81
[10] The multifractal nature of Lévy processes, Probab. Theory Related Fields, Volume 114 (1999) no. 2, pp. 207-227
[11] On lacunary wavelet series, Ann. Appl. Probab., Volume 10 (2000) no. 1, pp. 313-329
[12] Sur la série de Fourier, C. R. Acad. Sci. Paris, Volume 92 (1881), pp. 228-230
[13] Some Random Series of Functions, Cambridge Univ. Press, 1985
[14] Ondelettes et Opérateurs, Hermann, 1990
[15] A multifractal formalism, Adv. Math., Volume 116 (1995), pp. 92-195
- A dimensional mass transference principle from ball to rectangles for projections of Gibbs measures and applications, Journal of Mathematical Analysis and Applications, Volume 538 (2024) no. 1, p. 128386 | DOI:10.1016/j.jmaa.2024.128386
- An Upper Bound for the Hausdorff Dimension of Limsup Sets, Real Analysis Exchange, Volume 49 (2024) no. 2 | DOI:10.14321/realanalexch.49.2.1681282968
- Multifractal formalism for the inverse of random weak Gibbs measures, Stochastics and Dynamics, Volume 20 (2020) no. 04, p. 2050024 | DOI:10.1142/s0219493720500240
- SHRINKING TARGET PROBLEM FOR RANDOM IFS, Fractals, Volume 26 (2018) no. 06, p. 1850085 | DOI:10.1142/s0218348x18500858
- The singularity spectrum of the inverse of cookie-cutters, Ergodic Theory and Dynamical Systems, Volume 29 (2009) no. 4, p. 1075 | DOI:10.1017/s0143385708000618
- Ubiquity and large intersections properties under digit frequencies constraints, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 145 (2008) no. 3, p. 527 | DOI:10.1017/s030500410800159x
- Renewal of singularity sets of random self-similar measures, Advances in Applied Probability, Volume 39 (2007) no. 1, p. 162 | DOI:10.1239/aap/1175266474
- The singularity spectrum of Lévy processes in multifractal time, Advances in Mathematics, Volume 214 (2007) no. 1, p. 437 | DOI:10.1016/j.aim.2007.02.007
- Inside Singularity Sets of Random Gibbs Measures, Journal of Statistical Physics, Volume 120 (2005) no. 5-6, p. 1101 | DOI:10.1007/s10955-005-5458-y
Cité par 9 documents. Sources : Crossref
Commentaires - Politique