For a Drinfeld module of rank 2, we discuss many analogy points with elliptic curves. More precisely, we study the characteristic polynomial of a Drinfeld module of rank 2 and use it to calculate the number of isogeny classes for such modules.
Pour un module de Drinfeld de rang 2, on étudie plusieurs points d'analogie avec les courbes elliptiques. Plus précisément, on étudie la charactéristique polynômiale d'un module de Drinfeld de rang 2 et en l'utilisant, on calcule le nombre de classes d'isogénies d'un module de Drinfeld de rang 2 sur un corps fini.
Accepted:
Published online:
Mohamed-Saadbouh Mohamed-Ahmed 1
@article{CRMATH_2006__343_11-12_737_0, author = {Mohamed-Saadbouh Mohamed-Ahmed}, title = {Endomorphism rings and isogenies classes for {Drinfeld} {\protect\emph{A}-modules} of rank 2 over finite fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {737--740}, publisher = {Elsevier}, volume = {343}, number = {11-12}, year = {2006}, doi = {10.1016/j.crma.2006.10.026}, language = {en}, }
TY - JOUR AU - Mohamed-Saadbouh Mohamed-Ahmed TI - Endomorphism rings and isogenies classes for Drinfeld A-modules of rank 2 over finite fields JO - Comptes Rendus. Mathématique PY - 2006 SP - 737 EP - 740 VL - 343 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2006.10.026 LA - en ID - CRMATH_2006__343_11-12_737_0 ER -
Mohamed-Saadbouh Mohamed-Ahmed. Endomorphism rings and isogenies classes for Drinfeld A-modules of rank 2 over finite fields. Comptes Rendus. Mathématique, Volume 343 (2006) no. 11-12, pp. 737-740. doi : 10.1016/j.crma.2006.10.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.10.026/
[1] Bruno Angles, Modules de Drinfeld sur les corps finis, Thése de Doctorat, Université Paul Sabatier-Toulous III, no d'ordre 1872, 1994
[2] One some subring of Ore polynomials connected with finite Drinfeld modules, J. Algebra, Volume 181 (1996) no. 2, pp. 507-522
[3] Modules elliptiques, Math. USSR-Sb., Volume 94(136) (1974), pp. 594-627 (656)
[4] E.-U. Gekeler, B.A. Snyder, Drinfeld modules over finite fields, in: Drinfeld Modules, Modular Schemes and Application, Alden-Biesen, 1996
[5] Basic Structures of Function Field Arithmetic, Ergebnise der Mathematik und ihrer Grenzgebiete, vol. 35, Springer, 2006
[6] Isogenies of Drinfeld modules over finite fields, J. Number Theory, Volume 54 (1995) no. 1, pp. 161-171
Cited by Sources:
Comments - Policy