[Les variétés strictement approximativement kählérienne de dimension 6 et les formes symplectiques]
Nous démontrons que la structure presque-complexe d'une variété nearly-kählérienne non-intégrable de dimension 6-en particulier la structure presque-complexe standard sur la sphère -ne peut pas être compatible avec une forme symplectque.
We show that the almost complex structure underlying a non-Kähler, nearly Kähler 6-manifold (in particular, the standard almost complex structure of ) cannot be compatible with any symplectic form, even locally.
Accepté le :
Publié le :
Mehdi Lejmi 1
@article{CRMATH_2006__343_11-12_759_0, author = {Mehdi Lejmi}, title = {Strictly nearly {K\"ahler} 6-manifolds are not compatible with symplectic forms}, journal = {Comptes Rendus. Math\'ematique}, pages = {759--762}, publisher = {Elsevier}, volume = {343}, number = {11-12}, year = {2006}, doi = {10.1016/j.crma.2006.10.017}, language = {en}, }
Mehdi Lejmi. Strictly nearly Kähler 6-manifolds are not compatible with symplectic forms. Comptes Rendus. Mathématique, Volume 343 (2006) no. 11-12, pp. 759-762. doi : 10.1016/j.crma.2006.10.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.10.017/
[1] J. Armstrong, Almost-Kähler geometry, Ph.D. Thesis, Univerity of Oxford, 1998
[2] Remarks on the geometry of almost complex 6-manifolds, Asian J. Math., Volume 10 (2006), pp. 561-606
[3] Submanifolds and special structures on the octonians, J. Differential Geometry, Volume 17 (1982), pp. 185-232
[4] Classification des variétés approximativement kählériennes homogènes, Ann. Global Anal. Geom., Volume 27 (2005), pp. 201-225
[5] Nearly Kähler manifolds, J. Differential Geometry, Volume 4 (1970), pp. 283-309
[6] Foundations of Differential Geometry, II, Interscience, New York, 1963
[7] Equations de Lie, I, J. Differential Geometry, Volume 7 (1972), pp. 117-141
[8] Unit Killing vector fields on nearly Kähler manifolds, Int. J. Math., Volume 16 (2005), pp. 281-301
[9] Nearly Kähler geometry and Riemannian foliations, Asian J. Math., Volume 6 (2002), pp. 481-504
[10] Equvalence, Invariants and Symmetry, Cambridge University Press, Cambridge, 1995
[11] A generalization of the notion of instanton, Differential Geom. Appl., Volume 8 (1998), pp. 1-20
[12] The singular set of J-holomorphic maps into projective algebraic varities, J. Reine Angew. Math., Volume 570 (2004), pp. 47-87
[13] The singular set of 1–1 integral currents, 2003 (preprint) | arXiv
[14] Some examples of non calibrable almost complex structures, Forum Math., Volume 14 (2002), pp. 869-876
[15] Hodge theory on nearly Kähler manifolds, 2005 (preprint) | arXiv
Cité par Sources :
Commentaires - Politique