[Les variétés strictement approximativement kählérienne de dimension 6 et les formes symplectiques]
Nous démontrons que la structure presque-complexe d'une variété nearly-kählérienne non-intégrable de dimension 6-en particulier la structure presque-complexe standard sur la sphère
We show that the almost complex structure underlying a non-Kähler, nearly Kähler 6-manifold (in particular, the standard almost complex structure of
Accepté le :
Publié le :
Mehdi Lejmi 1
@article{CRMATH_2006__343_11-12_759_0, author = {Mehdi Lejmi}, title = {Strictly nearly {K\"ahler} 6-manifolds are not compatible with symplectic forms}, journal = {Comptes Rendus. Math\'ematique}, pages = {759--762}, publisher = {Elsevier}, volume = {343}, number = {11-12}, year = {2006}, doi = {10.1016/j.crma.2006.10.017}, language = {en}, }
Mehdi Lejmi. Strictly nearly Kähler 6-manifolds are not compatible with symplectic forms. Comptes Rendus. Mathématique, Volume 343 (2006) no. 11-12, pp. 759-762. doi : 10.1016/j.crma.2006.10.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.10.017/
[1] J. Armstrong, Almost-Kähler geometry, Ph.D. Thesis, Univerity of Oxford, 1998
[2] Remarks on the geometry of almost complex 6-manifolds, Asian J. Math., Volume 10 (2006), pp. 561-606
[3] Submanifolds and special structures on the octonians, J. Differential Geometry, Volume 17 (1982), pp. 185-232
[4] Classification des variétés approximativement kählériennes homogènes, Ann. Global Anal. Geom., Volume 27 (2005), pp. 201-225
[5] Nearly Kähler manifolds, J. Differential Geometry, Volume 4 (1970), pp. 283-309
[6] Foundations of Differential Geometry, II, Interscience, New York, 1963
[7] Equations de Lie, I, J. Differential Geometry, Volume 7 (1972), pp. 117-141
[8] Unit Killing vector fields on nearly Kähler manifolds, Int. J. Math., Volume 16 (2005), pp. 281-301
[9] Nearly Kähler geometry and Riemannian foliations, Asian J. Math., Volume 6 (2002), pp. 481-504
[10] Equvalence, Invariants and Symmetry, Cambridge University Press, Cambridge, 1995
[11] A generalization of the notion of instanton, Differential Geom. Appl., Volume 8 (1998), pp. 1-20
[12] The singular set of J-holomorphic maps into projective algebraic varities, J. Reine Angew. Math., Volume 570 (2004), pp. 47-87
[13] The singular set of 1–1 integral currents, 2003 (preprint) | arXiv
[14] Some examples of non calibrable almost complex structures, Forum Math., Volume 14 (2002), pp. 869-876
[15] Hodge theory on nearly Kähler manifolds, 2005 (preprint) | arXiv
- On Tamed Almost Complex Four-Manifolds, Peking Mathematical Journal, Volume 5 (2022) no. 1, p. 37 | DOI:10.1007/s42543-021-00045-7
- About Existence of Almost Kähler Structures on Six-Dimensional G1-Manifolds, Lobachevskii Journal of Mathematics, Volume 39 (2018) no. 1, p. 46 | DOI:10.1134/s1995080218010079
- A Note on the Deformations of Almost Complex Structures on Closed Four-Manifolds, The Journal of Geometric Analysis, Volume 27 (2017) no. 4, p. 2700 | DOI:10.1007/s12220-017-9779-2
- A note on tame/compatible almost complex structures on four-dimensional Lie algebras, Journal of Geometry and Physics, Volume 98 (2015), p. 292 | DOI:10.1016/j.geomphys.2015.08.020
- On Cohomology of Almost Complex 4-Manifolds, The Journal of Geometric Analysis, Volume 25 (2015) no. 3, p. 1431 | DOI:10.1007/s12220-014-9477-2
- On Taming and Compatible Symplectic Forms, The Journal of Geometric Analysis, Volume 25 (2015) no. 4, p. 2360 | DOI:10.1007/s12220-014-9516-z
- On integrability of an almost complex structure on a strictly nearly Kähler 6-manifold, Siberian Mathematical Journal, Volume 55 (2014) no. 1, p. 49 | DOI:10.1134/s0037446614010066
Cité par 7 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier