[Sur les structures presque complexes qui ne sont pas compatibles avec des formes symplectiques]
Dans cette Note on démontre que la structure presque complexe sous-jacente à une structure presque hermitienne non kälérienne admettant une connexion compatible avec une torsion antisymétrique ne peut pas, même localement, être calibrée par une forme symplectique.
In this Note we prove that the underlying almost complex structure to a non-Kähler almost Hermitian structure admitting a compatible connection with skew-symmetric torsion cannot be calibrated by a symplectic form even locally.
Accepté le :
Publié le :
Luigi Vezzoni 1
@article{CRMATH_2011__349_7-8_429_0, author = {Luigi Vezzoni}, title = {On almost complex structures which are not compatible with symplectic forms}, journal = {Comptes Rendus. Math\'ematique}, pages = {429--431}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.01.002}, language = {en}, }
Luigi Vezzoni. On almost complex structures which are not compatible with symplectic forms. Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 429-431. doi : 10.1016/j.crma.2011.01.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.002/
[1] On the geometry of almost complex 6-manifolds, Asian J. Math., Volume 10 (2006) no. 3, pp. 561-605
[2] Submanifolds and special structures on the octonions, J. Differential Geom., Volume 17 (1982) no. 2, pp. 185-232
[3] Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math., Volume 6 (2002), pp. 303-335
[4] Strictly nearly Kähler 6-manifolds are not compatible with symplectic forms, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006) no. 11–12, pp. 759-762
[5] Complex analytic coordinates in almost complex manifolds, Ann. Math. (2), Volume 65 (1957), pp. 391-404
[6] The singular set of J-holomorphic maps into projective algebraic varieties, J. Reine Angew. Math., Volume 570 (2004), pp. 47-87
[7] The singular set of integral currents, Ann. Math. (2), Volume 169 (2009) no. 3, pp. 741-794
[8] Holomorphic Curves in Symplectic Geometry (F. Audin et al., eds.), Progress in Math., vol. 117, Birkhäuser, 1994
[9] Some examples of non calibrable almost complex structures, Forum Math., Volume 14 (2002), pp. 869-876
Cité par Sources :
☆ This work was supported by the Project M.I.U.R. “Riemannian Metrics and Differentiable Manifolds” and by G.N.S.A.G.A. of I.N.d.A.M.
Commentaires - Politique