[Une caractérisation par chemins croissants du mouvement brownien fractionnaire indexé par des ensembles]
On montre qu'un processus stochastique est un mouvement brownien fractionnaire indexé par des ensembles si et seulement si ses projections sur tous les chemins croissants sont des mouvements browniens fractionnaires à paramètres réels changés de temps. On applique ce résultat à la définition d'une représentation intégrale pour de tels processus.
We prove that a set-indexed process is a set-indexed fractional Brownian motion if and only if its projections on all the increasing paths are one-parameter time changed fractional Brownian motions. As an application, we present an integral representation for such processes.
Accepté le :
Publié le :
Erick Herbin 1 ; Ely Merzbach 2
@article{CRMATH_2006__343_11-12_767_0, author = {Erick Herbin and Ely Merzbach}, title = {A characterization of the set-indexed fractional {Brownian} motion by increasing paths}, journal = {Comptes Rendus. Math\'ematique}, pages = {767--772}, publisher = {Elsevier}, volume = {343}, number = {11-12}, year = {2006}, doi = {10.1016/j.crma.2006.11.009}, language = {en}, }
TY - JOUR AU - Erick Herbin AU - Ely Merzbach TI - A characterization of the set-indexed fractional Brownian motion by increasing paths JO - Comptes Rendus. Mathématique PY - 2006 SP - 767 EP - 772 VL - 343 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2006.11.009 LA - en ID - CRMATH_2006__343_11-12_767_0 ER -
Erick Herbin; Ely Merzbach. A characterization of the set-indexed fractional Brownian motion by increasing paths. Comptes Rendus. Mathématique, Volume 343 (2006) no. 11-12, pp. 767-772. doi : 10.1016/j.crma.2006.11.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.11.009/
[1] E. Herbin, E. Merzbach, A set-indexed fractional Brownian motion, J. Theoret. Probab. (2006), in press
[2] E. Herbin, E. Merzbach, The multiparameter fractional Brownian motion, in: Proceedings of VK60 Math Everywhere Workshop, 2006, in press
[3] Set-indexed processes: distributions and weak convergence, Topics in Spatial Stochastic Processes, Lecture Notes in Mathematics, vol. 1802, Springer, 2003, pp. 85-126
[4] Set-Indexed Martingales, Chapman & Hall/CRC, 2000
[5] Hausdorff Measures, Cambridge Univ. Press, 1970
- Selected topics in the generalized mixed set-indexed fractional Brownian motion, Journal of Theoretical Probability, Volume 34 (2021) no. 3, pp. 1366-1381 | DOI:10.1007/s10959-021-01077-6 | Zbl:1496.60032
- Karhunen-Loève expansion of a set indexed fractional Brownian motion, Statistics Probability Letters, Volume 156 (2020), p. 6 (Id/No 108629) | DOI:10.1016/j.spl.2019.108629 | Zbl:1453.60090
- A group action on increasing sequences of set-indexed Brownian motions, Modern Stochastics. Theory and Applications, Volume 2 (2015) no. 2, pp. 185-198 | DOI:10.15559/15-vmsta31 | Zbl:1352.60116
- Stationarity and self-similarity characterization of the set-indexed fractional Brownian motion, Journal of Theoretical Probability, Volume 22 (2009) no. 4, pp. 1010-1029 | DOI:10.1007/s10959-008-0180-8 | Zbl:1197.60040
- Set-indexed Brownian motion on increasing paths, Journal of Theoretical Probability, Volume 22 (2009) no. 4, pp. 883-890 | DOI:10.1007/s10959-008-0188-0 | Zbl:1181.60060
- Set indexed strong martingales and path independent variation, Statistics Probability Letters, Volume 79 (2009) no. 8, pp. 1083-1088 | DOI:10.1016/j.spl.2008.12.014 | Zbl:1169.60007
Cité par 6 documents. Sources : zbMATH
Commentaires - Politique