Comptes Rendus
Équations aux dérivées partielles/Problèmes mathématiques de la mécanique
Sur la régularité des solutions des équations de Navier–Stokes dans un domaine périodique de faible épaisseur
Comptes Rendus. Mathématique, Volume 344 (2007) no. 2, pp. 97-102.

Dans cette Note, nous étudions la régularité globale des solutions des équations de Navier–Stokes dans un domaine de faible épaisseur Ω=[0,L1]×[0,L2]×[0,ϵ] avec des conditions aux limites périodiques. Nous montrons que si u0L2(Ω)C(L1,L2,δ)/ϵ1/2δ, où u0 est la donnée initiale et δ>0 est arbitraire, alors il existe une solution régulière globale avec la donnée initiale u0. Cette condition améliore les résultats existants, en particulier la moyenne de la vitesse initiale dans la direction de l'épaisseur faible n'est pas supposée petite quand l'épaisseur est petite.

In this Note, we study the global regularity of solutions of the Navier–Stokes equations in a thin domain Ω=[0,L1]×[0,L2]×[0,ϵ] with periodic boundary conditions. We prove that if u0L2(Ω)C(L1,L2,δ)/ϵ1/2δ where u0 is the initial datum and δ>0 is arbitrary, then there exists a unique global smooth solution with the initial datum u0. This condition improves on the existing results, in particular, the average in the thin direction of the initial velocity is not necessarily small when the thickness is small.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.11.019

Igor Kukavica 1 ; Mohammed Ziane 1

1 Department of Mathematics, University of Southern California, Los Angeles, CA, USA
@article{CRMATH_2007__344_2_97_0,
     author = {Igor Kukavica and Mohammed Ziane},
     title = {Sur la r\'egularit\'e des solutions des \'equations de {Navier{\textendash}Stokes} dans un domaine p\'eriodique de faible \'epaisseur},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {97--102},
     publisher = {Elsevier},
     volume = {344},
     number = {2},
     year = {2007},
     doi = {10.1016/j.crma.2006.11.019},
     language = {fr},
}
TY  - JOUR
AU  - Igor Kukavica
AU  - Mohammed Ziane
TI  - Sur la régularité des solutions des équations de Navier–Stokes dans un domaine périodique de faible épaisseur
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 97
EP  - 102
VL  - 344
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2006.11.019
LA  - fr
ID  - CRMATH_2007__344_2_97_0
ER  - 
%0 Journal Article
%A Igor Kukavica
%A Mohammed Ziane
%T Sur la régularité des solutions des équations de Navier–Stokes dans un domaine périodique de faible épaisseur
%J Comptes Rendus. Mathématique
%D 2007
%P 97-102
%V 344
%N 2
%I Elsevier
%R 10.1016/j.crma.2006.11.019
%G fr
%F CRMATH_2007__344_2_97_0
Igor Kukavica; Mohammed Ziane. Sur la régularité des solutions des équations de Navier–Stokes dans un domaine périodique de faible épaisseur. Comptes Rendus. Mathématique, Volume 344 (2007) no. 2, pp. 97-102. doi : 10.1016/j.crma.2006.11.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.11.019/

[1] I. Gallagher The tridimensional Navier–Stokes equations with almost bidimensional data: stability, uniqueness, and life span, Internat. Math. Res. Notices, Volume 18 (1997), pp. 919-935

[2] D. Iftimie The 3D Navier–Stokes equations seen as a perturbation of the 2D Navier–Stokes equations, Bull. Soc. Math. France, Volume 127 (1999), pp. 473-517

[3] D. Iftimie; G. Raugel Some results on the Navier–Stokes equations in thin 3D domains, J. Differential Equations, Volume 169 (2001), pp. 281-331

[4] I. Kukavica; M. Ziane Regularity of the Navier–Stokes equation in a thin domain with large data, Discrete Contin. Dyn. Syst., Volume 16 (2006), pp. 67-86

[5] I. Kukavica and M. Ziane, On the Navier–Stokes equation in a thin periodic domain, en préparation

[6] S. Montgomery-Smith Global regularity of the Navier–Stokes equation on thin three dimensional domains with periodic boundary conditions, Electronic J. Differential Equations, Volume 11 (1999), pp. 1-19

[7] G. Raugel; G.R. Sell Navier–Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc., Volume 6 (1993), pp. 503-568

[8] R. Temam; M. Ziane Navier–Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Differential Equations, Volume 1 (1996), pp. 499-546

Cité par Sources :

Commentaires - Politique