We state and discuss a theorem which links the existence of blossoms in a spline space (with sections in different Extended Chebyshev spaces and with connection matrices which are not necessarily totally positive) with the possibility of Hermite interpolation in its derivative space under Schoenberg–Whitney conditions.
Cette note établit un lien fondamental entre existence de floraisons dans un espace de splines (à sections dans différents espaces de Chebyshev généralisés et avec matrices de connexion non nécessairement totalement positives) et possibilité d'interpoler au sens d'Hermite sous conditions de Schoenberg–Whitney.
Accepted:
Published online:
Alexander Kayumov 1; Marie-Laurence Mazure 2
@article{CRMATH_2007__344_1_65_0, author = {Alexander Kayumov and Marie-Laurence Mazure}, title = {Chebyshevian splines: interpolation and blossoms}, journal = {Comptes Rendus. Math\'ematique}, pages = {65--70}, publisher = {Elsevier}, volume = {344}, number = {1}, year = {2007}, doi = {10.1016/j.crma.2006.11.021}, language = {en}, }
Alexander Kayumov; Marie-Laurence Mazure. Chebyshevian splines: interpolation and blossoms. Comptes Rendus. Mathématique, Volume 344 (2007) no. 1, pp. 65-70. doi : 10.1016/j.crma.2006.11.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.11.021/
[1] De Boor-Fix dual functionals and algorithms for Tchebycheffian B-spline curves, Constructive Approximation, Volume 12 (1996), pp. 385-408
[2] A geometric proof of total positivity for spline interpolation, Mathematics of Computation, Volume 45 (1985) no. 172, pp. 497-504
[3] Blossoming: a geometrical approach, Constructive Approximation, Volume 15 (1999), pp. 33-68
[4] Chebyshev splines beyond total positivity, Advances in Computational Mathematics, Volume 14 (2001), pp. 129-156
[5] On the equivalence between existence of B-spline bases and existence of blossoms, Constructive Approximation, Volume 20 (2004), pp. 603-624
[6] Tchebycheff curves (M. Gasca; C.A. Micchelli, eds.), Total Positivity and Its Applications, Kluwer, Dordrecht, 1996, pp. 187-218
[7] G. Mühlbach, One sided Hermite interpolation by piecewise different generalized polynomials, Advances in Computational Mathematics, in press
Cited by Sources:
Comments - Policy