Comptes Rendus
Partial Differential Equations
Some isoperimetric problems for the principal eigenvalues of second-order elliptic operators in divergence form
Comptes Rendus. Mathématique, Volume 344 (2007) no. 3, pp. 169-174.

We prove various optimization results for the principal eigenvalues of general second-order elliptic operators in divergence form with Dirichlet boundary condition in C2 bounded nonempty domains of Rn. In particular, we obtain a ‘Faber–Krahn’ type inequality for these operators. The proofs use a new rearrangement technique.

On montre divers résultats d'optimisation pour la première valeur propre d'opérateurs elliptiques généraux du second ordre sous forme divergence avec condition au bord de Dirichlet dans des domaines bornés non vides de classe C2 de Rn. En particulier, on obtient une inégalité de type « Faber–Krahn » pour ces opérateurs. Les preuves utilisent une nouvelle méthode de réarrangement.

Accepted:
Published online:
DOI: 10.1016/j.crma.2006.11.025

François Hamel 1; Nikolai Nadirashvili 2; Emmanuel Russ 1

1 Université Paul-Cézanne LATP, avenue Escadrille Normandie-Niemen, 13397 Marseille cedex 20, France
2 CNRS, LATP, CMI, 39, rue F. Joliot-Curie, 13453 Marseille cedex 13, France
@article{CRMATH_2007__344_3_169_0,
     author = {Fran\c{c}ois Hamel and Nikolai Nadirashvili and Emmanuel Russ},
     title = {Some isoperimetric problems for the principal eigenvalues of second-order elliptic operators in divergence form},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {169--174},
     publisher = {Elsevier},
     volume = {344},
     number = {3},
     year = {2007},
     doi = {10.1016/j.crma.2006.11.025},
     language = {en},
}
TY  - JOUR
AU  - François Hamel
AU  - Nikolai Nadirashvili
AU  - Emmanuel Russ
TI  - Some isoperimetric problems for the principal eigenvalues of second-order elliptic operators in divergence form
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 169
EP  - 174
VL  - 344
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2006.11.025
LA  - en
ID  - CRMATH_2007__344_3_169_0
ER  - 
%0 Journal Article
%A François Hamel
%A Nikolai Nadirashvili
%A Emmanuel Russ
%T Some isoperimetric problems for the principal eigenvalues of second-order elliptic operators in divergence form
%J Comptes Rendus. Mathématique
%D 2007
%P 169-174
%V 344
%N 3
%I Elsevier
%R 10.1016/j.crma.2006.11.025
%G en
%F CRMATH_2007__344_3_169_0
François Hamel; Nikolai Nadirashvili; Emmanuel Russ. Some isoperimetric problems for the principal eigenvalues of second-order elliptic operators in divergence form. Comptes Rendus. Mathématique, Volume 344 (2007) no. 3, pp. 169-174. doi : 10.1016/j.crma.2006.11.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.11.025/

[1] A. Alvino; G. Trombetti; P.-L. Lions; S. Matarasso Comparison results for solutions of elliptic problems via symmetrization, Ann. Inst H. Poincaré Anal. Non Linéaire, Volume 16 2 (1999), pp. 167-188

[2] H. Berestycki; L. Nirenberg; S.R.S. Varadhan The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., Volume 47 (1994), pp. 47-92

[3] G. Faber Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsberichte der mathematisch-physikalischen Klasse der Bauerischen Akademie der Wissenschaften zu München Jahrgang (1923), pp. 169-172

[4] F. Hamel; N. Nadirashvili; E. Russ An isoperimetric inequality for the principal eigenvalue of the Laplacian with drift, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 347-352

[5] F. Hamel; N. Nadirashvili; E. Russ A Faber–Krahn inequality with drift | arXiv

[6] F. Hamel; N. Nadirashvili; E. Russ Rearrangement inequalities and applications to isoperimetric problems for eigenvalues | arXiv

[7] E. Krahn Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann., Volume 94 (1925), pp. 97-100

[8] E. Krahn Über Minimaleigenschaft der Kugel in drei und mehr Dimensionen, Acta Comm. Univ. Tartu (Dorpat) A, Volume 9 (1926), pp. 1-44

[9] J.W.S. Rayleigh The Theory of Sound, Dover Publications, New York, 1945 (republication of the 1894/1896 edition)

[10] G. Talenti Linear elliptic P.D.E.'s: level sets, rearrangements and a priori estimates of solutions, Boll. U.M.I. (6), 4-B (1985), pp. 917-949

Cited by Sources:

Comments - Policy