We derive global Carleman estimates for one-dimensional linear parabolic operators with a coefficient c with bounded variations. These estimates are obtained by approximating c by piecewise regular coefficients, , and passing to the limit in the Carleman estimates associated to the operators defined with . Such estimates yield results of controllability to the trajectories for a class of semilinear parabolic equations.
On obtient des inégalités de Carleman pour des opérateurs paraboliques linéaires avec un coefficient c à variations bornées. Ces inégalités sont obtenues par approximations de c par des coefficients réguliers par morceaux, , et en passant à la limite dans les inégalités de Carleman associées aux opérateurs définis par . De telles inégalités donnent des résultats de contrôlabilité aux trajectoires pour une classe d'équations semilinéaires paraboliques.
Accepted:
Published online:
Jérôme Le Rousseau 1
@article{CRMATH_2007__344_3_175_0, author = {J\'er\^ome Le Rousseau}, title = {Carleman estimates and controllability results for the one-dimensional heat equation with {\protect\emph{BV}} coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {175--180}, publisher = {Elsevier}, volume = {344}, number = {3}, year = {2007}, doi = {10.1016/j.crma.2006.12.011}, language = {en}, }
TY - JOUR AU - Jérôme Le Rousseau TI - Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients JO - Comptes Rendus. Mathématique PY - 2007 SP - 175 EP - 180 VL - 344 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2006.12.011 LA - en ID - CRMATH_2007__344_3_175_0 ER -
Jérôme Le Rousseau. Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients. Comptes Rendus. Mathématique, Volume 344 (2007) no. 3, pp. 175-180. doi : 10.1016/j.crma.2006.12.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.12.011/
[1] G. Alessandrini, L. Escauriaza, Null-controllability of one-dimensional parabolic equations, ESAIM: Control Optim. Calc. Var., in press
[2] Exact controllability of the superlinear heat equation, Appl. Math. Optim., Volume 42 (2000), pp. 73-89
[3] Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications, C. R. Mecanique, Volume 334 (2006), pp. 582-586
[4] Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem, 2006 http://www.cmi.univ-mrs.fr/~jlerous/publications.html (Preprint: LATP, Université d'Aix-Marseille I)
[5] Hyperbolic Systems of Conservation Laws: The One Dimensional Cauchy Problem, Oxford University Press, 2000
[6] On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., Volume 41 (2002), pp. 798-819
[7] Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM: Control Optim. Calc. Var., Volume 8 (2002), pp. 621-661
[8] Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Analyse Non Linéaire, Volume 17 (2000), pp. 583-616
[9] On the null controllability of the one-dimensional heat equation with BV coefficients, Comput. Appl. Math., Volume 21 (2002), pp. 167-190
[10] Controllability of Evolution Equations, Lecture Notes, vol. 34, Seoul National University, Korea, 1996
[11] Eléments de la théorie des fonctions et de l'analyse fonctionnelle, Editions Mir, 1974
[12] Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, Volume 20 (1995), pp. 335-356
[13] A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Stud. Appl. Math., Volume 52 (1973), pp. 189-221
[14] Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications, Lecture Notes in Pure and Applied Mathematics, vol. 218, Dekker, New York, 2001 (pp. 113–137)
Cited by Sources:
Comments - Policy