We study the behavior near of any positive solution of (E) in Ω which vanishes on , where is a smooth domain, and . Our results are based upon a priori estimates of solutions of (E) and existence, non-existence and uniqueness results for solutions of some nonlinear elliptic equations on the upper-half unit sphere.
Nous étudions le comportement quand x tend vers de toute solution positive de (E) dans Ω qui s'annule sur , où est un domaine régulier, et . Nos résultats sont fondés sur des estimations a priori des solutions de (E), et des résultats d'existence, de non existence et d'unicité de solutions de certaines équations elliptiques non linéaires sur la demi-sphère unité.
Published online:
Marie-Françoise Bidaut-Véron 1; Augusto C. Ponce 1; Laurent Véron 1
@article{CRMATH_2007__344_2_83_0, author = {Marie-Fran\c{c}oise Bidaut-V\'eron and Augusto C. Ponce and Laurent V\'eron}, title = {Boundary singularities of positive solutions of some nonlinear elliptic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {83--88}, publisher = {Elsevier}, volume = {344}, number = {2}, year = {2007}, doi = {10.1016/j.crma.2006.11.027}, language = {en}, }
TY - JOUR AU - Marie-Françoise Bidaut-Véron AU - Augusto C. Ponce AU - Laurent Véron TI - Boundary singularities of positive solutions of some nonlinear elliptic equations JO - Comptes Rendus. Mathématique PY - 2007 SP - 83 EP - 88 VL - 344 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2006.11.027 LA - en ID - CRMATH_2007__344_2_83_0 ER -
%0 Journal Article %A Marie-Françoise Bidaut-Véron %A Augusto C. Ponce %A Laurent Véron %T Boundary singularities of positive solutions of some nonlinear elliptic equations %J Comptes Rendus. Mathématique %D 2007 %P 83-88 %V 344 %N 2 %I Elsevier %R 10.1016/j.crma.2006.11.027 %G en %F CRMATH_2007__344_2_83_0
Marie-Françoise Bidaut-Véron; Augusto C. Ponce; Laurent Véron. Boundary singularities of positive solutions of some nonlinear elliptic equations. Comptes Rendus. Mathématique, Volume 344 (2007) no. 2, pp. 83-88. doi : 10.1016/j.crma.2006.11.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.11.027/
[1] M.-F. Bidaut-Véron, A.C. Ponce, L. Véron, in preparation
[2] Asymptotics of solutions of some nonlinear elliptic systems, Comm. Partial Differential Equations, Volume 21 (1996), pp. 1035-1086
[3] Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., Volume 106 (1991), pp. 489-539
[4] An elliptic semilinear equation with source term involving boundary measures: the subcritical case, Rev. Mat. Iberoamericana, Volume 16 (2000), pp. 477-513
[5] Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J., Volume 30 (1981), pp. 621-640
[6] Classical Potential Theory and its Probabilistic Counterpart, Springer, London, 1984
[7] Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., Volume 34 (1981), pp. 525-598
[8] Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc., Volume 333 (1992), pp. 339-363
[9] Symmetry properties of positive solutions of elliptic equations on symmetric domains, Appl. Anal., Volume 64 (1997), pp. 153-169
[10] P. Poláčik, P. Quittner, Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville type theorems. Part I: Elliptic equations and systems, Duke Math. J., in press
[11] Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans , Ann. Math. Pura Appl., Volume 127 (1981), pp. 25-50
Cited by Sources:
Comments - Policy