Comptes Rendus
Partial Differential Equations
Boundary singularities of positive solutions of some nonlinear elliptic equations
Comptes Rendus. Mathématique, Volume 344 (2007) no. 2, pp. 83-88.

We study the behavior near x0 of any positive solution of (E) Δu=uq in Ω which vanishes on Ω{x0}, where ΩRN is a smooth domain, q(N+1)/(N1) and x0Ω. Our results are based upon a priori estimates of solutions of (E) and existence, non-existence and uniqueness results for solutions of some nonlinear elliptic equations on the upper-half unit sphere.

Nous étudions le comportement quand x tend vers x0 de toute solution positive de (E) Δu=uq dans Ω qui s'annule sur Ω{x0}, où ΩRN est un domaine régulier, q(N+1)/(N1) et x0Ω. Nos résultats sont fondés sur des estimations a priori des solutions de (E), et des résultats d'existence, de non existence et d'unicité de solutions de certaines équations elliptiques non linéaires sur la demi-sphère unité.

Accepted:
Published online:
DOI: 10.1016/j.crma.2006.11.027

Marie-Françoise Bidaut-Véron 1; Augusto C. Ponce 1; Laurent Véron 1

1 Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 6083, Faculté des Sciences, 37200 Tours, France
@article{CRMATH_2007__344_2_83_0,
     author = {Marie-Fran\c{c}oise Bidaut-V\'eron and Augusto C. Ponce and Laurent V\'eron},
     title = {Boundary singularities of positive solutions of some nonlinear elliptic equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {83--88},
     publisher = {Elsevier},
     volume = {344},
     number = {2},
     year = {2007},
     doi = {10.1016/j.crma.2006.11.027},
     language = {en},
}
TY  - JOUR
AU  - Marie-Françoise Bidaut-Véron
AU  - Augusto C. Ponce
AU  - Laurent Véron
TI  - Boundary singularities of positive solutions of some nonlinear elliptic equations
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 83
EP  - 88
VL  - 344
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2006.11.027
LA  - en
ID  - CRMATH_2007__344_2_83_0
ER  - 
%0 Journal Article
%A Marie-Françoise Bidaut-Véron
%A Augusto C. Ponce
%A Laurent Véron
%T Boundary singularities of positive solutions of some nonlinear elliptic equations
%J Comptes Rendus. Mathématique
%D 2007
%P 83-88
%V 344
%N 2
%I Elsevier
%R 10.1016/j.crma.2006.11.027
%G en
%F CRMATH_2007__344_2_83_0
Marie-Françoise Bidaut-Véron; Augusto C. Ponce; Laurent Véron. Boundary singularities of positive solutions of some nonlinear elliptic equations. Comptes Rendus. Mathématique, Volume 344 (2007) no. 2, pp. 83-88. doi : 10.1016/j.crma.2006.11.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.11.027/

[1] M.-F. Bidaut-Véron, A.C. Ponce, L. Véron, in preparation

[2] M.-F. Bidaut-Véron; Th. Raoux Asymptotics of solutions of some nonlinear elliptic systems, Comm. Partial Differential Equations, Volume 21 (1996), pp. 1035-1086

[3] M.-F. Bidaut-Véron; L. Véron Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., Volume 106 (1991), pp. 489-539

[4] M.-F. Bidaut-Véron; L. Vivier An elliptic semilinear equation with source term involving boundary measures: the subcritical case, Rev. Mat. Iberoamericana, Volume 16 (2000), pp. 477-513

[5] L. Cafarelli; E. Fabes; S. Mortola; S. Salsa Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J., Volume 30 (1981), pp. 621-640

[6] J. Doob Classical Potential Theory and its Probabilistic Counterpart, Springer, London, 1984

[7] B. Gidas; J. Spruck Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., Volume 34 (1981), pp. 525-598

[8] M.K. Kwong; Y. Li Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc., Volume 333 (1992), pp. 339-363

[9] P. Padilla Symmetry properties of positive solutions of elliptic equations on symmetric domains, Appl. Anal., Volume 64 (1997), pp. 153-169

[10] P. Poláčik, P. Quittner, Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville type theorems. Part I: Elliptic equations and systems, Duke Math. J., in press

[11] L. Véron Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans RN, Ann. Math. Pura Appl., Volume 127 (1981), pp. 25-50

Cited by Sources:

Comments - Policy