[Singularités au bord de solutions positives d'équations elliptiques non-linéaires]
Nous étudions le comportement quand x tend vers
We study the behavior near
Publié le :
Marie-Françoise Bidaut-Véron 1 ; Augusto C. Ponce 1 ; Laurent Véron 1
@article{CRMATH_2007__344_2_83_0, author = {Marie-Fran\c{c}oise Bidaut-V\'eron and Augusto C. Ponce and Laurent V\'eron}, title = {Boundary singularities of positive solutions of some nonlinear elliptic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {83--88}, publisher = {Elsevier}, volume = {344}, number = {2}, year = {2007}, doi = {10.1016/j.crma.2006.11.027}, language = {en}, }
TY - JOUR AU - Marie-Françoise Bidaut-Véron AU - Augusto C. Ponce AU - Laurent Véron TI - Boundary singularities of positive solutions of some nonlinear elliptic equations JO - Comptes Rendus. Mathématique PY - 2007 SP - 83 EP - 88 VL - 344 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2006.11.027 LA - en ID - CRMATH_2007__344_2_83_0 ER -
%0 Journal Article %A Marie-Françoise Bidaut-Véron %A Augusto C. Ponce %A Laurent Véron %T Boundary singularities of positive solutions of some nonlinear elliptic equations %J Comptes Rendus. Mathématique %D 2007 %P 83-88 %V 344 %N 2 %I Elsevier %R 10.1016/j.crma.2006.11.027 %G en %F CRMATH_2007__344_2_83_0
Marie-Françoise Bidaut-Véron; Augusto C. Ponce; Laurent Véron. Boundary singularities of positive solutions of some nonlinear elliptic equations. Comptes Rendus. Mathématique, Volume 344 (2007) no. 2, pp. 83-88. doi : 10.1016/j.crma.2006.11.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.11.027/
[1] M.-F. Bidaut-Véron, A.C. Ponce, L. Véron, in preparation
[2] Asymptotics of solutions of some nonlinear elliptic systems, Comm. Partial Differential Equations, Volume 21 (1996), pp. 1035-1086
[3] Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., Volume 106 (1991), pp. 489-539
[4] An elliptic semilinear equation with source term involving boundary measures: the subcritical case, Rev. Mat. Iberoamericana, Volume 16 (2000), pp. 477-513
[5] Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J., Volume 30 (1981), pp. 621-640
[6] Classical Potential Theory and its Probabilistic Counterpart, Springer, London, 1984
[7] Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., Volume 34 (1981), pp. 525-598
[8] Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc., Volume 333 (1992), pp. 339-363
[9] Symmetry properties of positive solutions of elliptic equations on symmetric domains, Appl. Anal., Volume 64 (1997), pp. 153-169
[10] P. Poláčik, P. Quittner, Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville type theorems. Part I: Elliptic equations and systems, Duke Math. J., in press
[11] Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans
- Positive solutions for semilinear elliptic systems with boundary measure data, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 201 (2022) no. 3, pp. 1325-1346 | DOI:10.1007/s10231-021-01159-6 | Zbl:1491.35183
- Qualitative properties for solutions to subcritical fourth order systems, Nonlinearity, Volume 35 (2022) no. 10, pp. 5249-5296 | DOI:10.1088/1361-6544/ac8a38 | Zbl:1498.35238
- Semilinear elliptic system with boundary singularity, Discrete and Continuous Dynamical Systems, Volume 40 (2020) no. 4, pp. 2189-2212 | DOI:10.3934/dcds.2020111 | Zbl:1436.35199
- Boundary singularity of Choquard equation in the half space, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 126 (2019), pp. 232-248 | DOI:10.1016/j.matpur.2018.06.021 | Zbl:1418.35160
- The critical semilinear elliptic equation with isolated boundary singularities, Journal of Differential Equations, Volume 263 (2017) no. 3, pp. 1907-1930 | DOI:10.1016/j.jde.2017.03.034 | Zbl:1368.35127
- Boundary singularities on a wedge-like domain of a semilinear elliptic equation, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, Volume 145 (2015) no. 5, pp. 979-1006 | DOI:10.1017/s0308210515000207 | Zbl:1341.35062
- On well-posedness of the semilinear heat equation on the sphere, Journal of Evolution Equations, Volume 12 (2012) no. 3, pp. 571-592 | DOI:10.1007/s00028-012-0145-3 | Zbl:1277.35214
- Isolated boundary singularities of semilinear elliptic equations, Calculus of Variations and Partial Differential Equations, Volume 40 (2011) no. 1-2, pp. 183-221 | DOI:10.1007/s00526-010-0337-z | Zbl:1215.35075
- Very weak solutions with boundary singularities for semilinear elliptic Dirichlet problems in domains with conical corners, Journal of Mathematical Analysis and Applications, Volume 352 (2009) no. 1, pp. 496-514 | DOI:10.1016/j.jmaa.2008.06.008 | Zbl:1168.35013
- Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions, Calculus of Variations and Partial Differential Equations, Volume 32 (2008) no. 4, pp. 429-452 | DOI:10.1007/s00526-007-0155-0 | Zbl:1147.35042
- Separable solutions of some quasilinear equations with source reaction, Journal of Differential Equations, Volume 244 (2008) no. 2, pp. 274-308 | DOI:10.1016/j.jde.2007.10.024 | Zbl:1136.35041
- Boundary singularities for weak solutions of semilinear elliptic problems, Journal of Functional Analysis, Volume 253 (2007) no. 1, pp. 241-272 | DOI:10.1016/j.jfa.2007.05.023 | Zbl:1137.35038
- Nonlocal Problems, Superlinear Parabolic Problems (2007), p. 377 | DOI:10.1007/978-3-7643-8442-5_6
Cité par 13 documents. Sources : Crossref, zbMATH
Commentaires - Politique