[Les répulseurs p-adiques dans
Nous prouvons que tout répulseur faible transitif p-adique est isométriquement conjugué à un sous-shift de type fini où une métrique convenable est définie.
We prove that any p-adic transitive weak repeller is isometrically conjugate to a subshift of finite type where a suitable metric is defined.
Accepté le :
Publié le :
Aihua Fan 1, 2 ; Lingmin Liao 1, 2 ; Yue Fei Wang 3 ; Dan Zhou 2
@article{CRMATH_2007__344_4_219_0, author = {Aihua Fan and Lingmin Liao and Yue Fei Wang and Dan Zhou}, title = {\protect\emph{p}-adic repellers in $ {\mathbb{Q}}_{p}$ are subshifts of finite type}, journal = {Comptes Rendus. Math\'ematique}, pages = {219--224}, publisher = {Elsevier}, volume = {344}, number = {4}, year = {2007}, doi = {10.1016/j.crma.2006.12.007}, language = {en}, }
TY - JOUR AU - Aihua Fan AU - Lingmin Liao AU - Yue Fei Wang AU - Dan Zhou TI - p-adic repellers in $ {\mathbb{Q}}_{p}$ are subshifts of finite type JO - Comptes Rendus. Mathématique PY - 2007 SP - 219 EP - 224 VL - 344 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2006.12.007 LA - en ID - CRMATH_2007__344_4_219_0 ER -
Aihua Fan; Lingmin Liao; Yue Fei Wang; Dan Zhou. p-adic repellers in $ {\mathbb{Q}}_{p}$ are subshifts of finite type. Comptes Rendus. Mathématique, Volume 344 (2007) no. 4, pp. 219-224. doi : 10.1016/j.crma.2006.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.12.007/
[1] An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995
[2] Ultrametric Calculus, Cambridge University Press, 1984
[3] p-adic chaos and random number generation, Experiment Math., Volume 7 (1998) no. 4, pp. 333-342
- Some non-periodic
-adic generalized Gibbs measures for the Ising model on a Cayley tree of order , Mathematical Physics, Analysis and Geometry, Volume 26 (2023) no. 3, p. 23 (Id/No 22) | DOI:10.1007/s11040-023-09465-6 | Zbl:1529.82010 - Chaotic behavior of the
-adic Potts-Bethe mapping. II, Ergodic Theory and Dynamical Systems, Volume 42 (2022) no. 11, pp. 3433-3457 | DOI:10.1017/etds.2021.96 | Zbl:1508.37027 - On periodic
-adic generalized Gibbs measures for Ising model on a Cayley tree, Letters in Mathematical Physics, Volume 112 (2022) no. 6, p. 18 (Id/No 112) | DOI:10.1007/s11005-022-01598-z | Zbl:1508.37054 - Chaos in
-adic statistical lattice models: Potts model, Advances in non-Archimedean analysis and applications. The -adic methodology in STEAM-H, Cham: Springer, 2021, pp. 115-165 | DOI:10.1007/978-3-030-81976-7_3 | Zbl:1504.30064 - Translation-invariant generalized
-adic Gibbs measures for the Ising model on Cayley trees, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 16, pp. 12302-12316 | DOI:10.1002/mma.7088 | Zbl:1477.82009 - On dynamics of infinitely generated contractive mapping systems on
, Acta Mathematica Sinica. English Series, Volume 36 (2020) no. 6, pp. 651-662 | DOI:10.1007/s10114-020-8451-0 | Zbl:1450.37008 - Hausdorff Dimensions of Conformal Iterated Function Systems of Generalized Complex Continued Fractions, Pure Mathematics, Volume 10 (2020) no. 08, p. 726 | DOI:10.12677/pm.2020.108086
- , PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH2018): Innovative Technologies for Mathematics Mathematics for Technological Innovation, Volume 2184 (2019), p. 020001 | DOI:10.1063/1.5136355
- Topological entropy of a class of subshifts of finite type, Acta Mathematica Sinica. English Series, Volume 34 (2018) no. 12, pp. 1765-1777 | DOI:10.1007/s10114-018-7439-5 | Zbl:1407.54025
- Rational map
on the projective line over , Advances in ultrametric analysis. 14th international conference on -adic functional analysis, Université d'Auvergne, Aurillac, France, June 30 – July 4, 2016. Proceedings, Providence, RI: American Mathematical Society (AMS), 2018, pp. 217-230 | DOI:10.1090/conm/704/14168 | Zbl:1419.37090 - Chaotic behavior of the
-adic Potts-Bethe mapping, Discrete and Continuous Dynamical Systems, Volume 38 (2018) no. 1, pp. 231-245 | DOI:10.3934/dcds.2018011 | Zbl:1372.37022 - Periodic
-adic Gibbs measures of -state Potts model on Cayley trees. I: The chaos implies the vastness of the set of -adic Gibbs measures, Journal of Statistical Physics, Volume 171 (2018) no. 6, pp. 1000-1034 | DOI:10.1007/s10955-018-2053-6 | Zbl:1397.82008 - Rational map
on the projective line over , Science China. Mathematics, Volume 61 (2018) no. 12, pp. 2221-2236 | DOI:10.1007/s11425-017-9229-3 | Zbl:1404.37121 - On chaotic behaviour of the p-adic generalized Ising mapping and its application, Journal of Difference Equations and Applications (2017), p. 1 | DOI:10.1080/10236198.2017.1340468
- On Julia set and chaos in
-adic Ising model on the Cayley tree, Mathematical Physics, Analysis and Geometry, Volume 20 (2017) no. 4, p. 14 (Id/No 23) | DOI:10.1007/s11040-017-9254-0 | Zbl:1413.46067 - Automaton model of protein: Dynamics of conformational and functional states, Progress in Biophysics and Molecular Biology, Volume 130 (2017), p. 2 | DOI:10.1016/j.pbiomolbio.2017.02.003
- Phase transition and chaos:
-adic Potts model on a Cayley tree, Chaos, Solitons and Fractals, Volume 87 (2016), pp. 190-196 | DOI:10.1016/j.chaos.2016.04.003 | Zbl:1355.37106 - On metric properties of unconventional limit sets of contractive non-Archimedean dynamical systems, Dynamical Systems, Volume 31 (2016) no. 4, pp. 506-524 | DOI:10.1080/14689367.2016.1158241 | Zbl:1392.37112
- Haar measures and Hausdorff dimensions of
-adic Julia sets, Ergodic theory, dynamical systems, and the continuing influence of John C. Oxtoby. Oxtoby centennial conference, Bryn Mawr College, Bryn Mawr, PA, USA, October 30–31, 2010. Williams ergodic theory conference, Williams College, Williamstown, MA, USA, July 27–29, 2012. AMS special session on ergodic theory and symbolic dynamics, Baltimore, MD, USA, January 17–18, 2014. Proceedings, Providence, RI: American Mathematical Society (AMS), 2016, pp. 187-196 | DOI:10.1090/conm/678/13647 | Zbl:1391.37084 - On a generalized self-similarity in the
-adic field, Fractals, Volume 24 (2016) no. 4, p. 11 (Id/No 1650041) | DOI:10.1142/s0218348x16500419 | Zbl:1357.28012 - On periodic Gibbs measures of
-adic Potts model on a Cayley tree, -Adic Numbers, Ultrametric Analysis, and Applications, Volume 8 (2016) no. 3, pp. 225-235 | DOI:10.1134/s2070046616030043 | Zbl:1356.82022 - Renormalization method in
-adic -model on the Cayley tree, International Journal of Theoretical Physics, Volume 54 (2015) no. 10, pp. 3577-3595 | DOI:10.1007/s10773-015-2597-z | Zbl:1334.82046 - On non-Archimedean recurrence equations and their applications, Journal of Mathematical Analysis and Applications, Volume 423 (2015) no. 2, pp. 1203-1218 | DOI:10.1016/j.jmaa.2014.10.046 | Zbl:1303.39011
- On
-adic -model on the Cayley tree. II: Phase transitions, Reports on Mathematical Physics, Volume 75 (2015) no. 1, pp. 25-46 | DOI:10.1016/s0034-4877(15)60022-2 | Zbl:1321.82020 - Criteria of ergodicity for
-adic dynamical systems in terms of coordinate functions, Chaos, Solitons and Fractals, Volume 60 (2014), pp. 11-30 | DOI:10.1016/j.chaos.2014.01.001 | Zbl:1348.37128 - Ergodicity criteria for non-expanding transformations of 2-adic spheres, Discrete and Continuous Dynamical Systems, Volume 34 (2014) no. 2, pp. 367-377 | DOI:10.3934/dcds.2014.34.367 | Zbl:1317.37115
- Dynamics of a quasi-quadratic map, Journal of Difference Equations and Applications, Volume 20 (2014) no. 1, pp. 36-48 | DOI:10.1080/10236198.2013.805754 | Zbl:1310.37048
- On metric properties of limit sets of contractive analytic non-Archimedean dynamical systems, Journal of Mathematical Analysis and Applications, Volume 414 (2014) no. 1, pp. 386-401 | DOI:10.1016/j.jmaa.2014.01.015 | Zbl:1391.37088
- On recent results of ergodic property for
-adic dynamical systems, -Adic Numbers, Ultrametric Analysis, and Applications, Volume 6 (2014) no. 3, pp. 234-255 | DOI:10.1134/s2070046614030066 | Zbl:1347.37154 - Criteria of measure-preserving for
-adic dynamical systems in terms of the van der Put basis, Journal of Number Theory, Volume 133 (2013) no. 2, pp. 484-491 | DOI:10.1016/j.jnt.2012.08.013 | Zbl:1278.37061 - On ap-adic Cubic Generalized Logistic Dynamical System, Journal of Physics: Conference Series, Volume 435 (2013), p. 012012 | DOI:10.1088/1742-6596/435/1/012012
- On dynamical systems and phase transitions for
-state -adic Potts model on the Cayley tree, Mathematical Physics, Analysis and Geometry, Volume 16 (2013) no. 1, pp. 49-87 | DOI:10.1007/s11040-012-9120-z | Zbl:1280.46047 - On measure-preserving functions over
, -Adic Numbers, Ultrametric Analysis, and Applications, Volume 4 (2012) no. 4, pp. 326-335 | DOI:10.1134/s2070046612040061 | Zbl:1291.37122 - A dynamical system approach to phase transitions for
-adic Potts model on the Cayley tree of order two, Reports on Mathematical Physics, Volume 70 (2012) no. 3, pp. 385-406 | DOI:10.1016/s0034-4877(12)60053-6 | Zbl:1271.82018 - On minimal decomposition of
-adic polynomial dynamical systems, Advances in Mathematics, Volume 228 (2011) no. 4, pp. 2116-2144 | DOI:10.1016/j.aim.2011.06.032 | Zbl:1269.37036 - Noncommutative algebraic dynamics: ergodic theory for profinite groups, Proceedings of the Steklov Institute of Mathematics, Volume 265 (2009), pp. 30-58 | DOI:10.1134/s0081543809020035 | Zbl:1201.37010
Cité par 36 documents. Sources : Crossref, zbMATH
Commentaires - Politique