We prove that any p-adic transitive weak repeller is isometrically conjugate to a subshift of finite type where a suitable metric is defined.
Nous prouvons que tout répulseur faible transitif p-adique est isométriquement conjugué à un sous-shift de type fini où une métrique convenable est définie.
Accepted:
Published online:
Aihua Fan 1, 2; Lingmin Liao 1, 2; Yue Fei Wang 3; Dan Zhou 2
@article{CRMATH_2007__344_4_219_0, author = {Aihua Fan and Lingmin Liao and Yue Fei Wang and Dan Zhou}, title = {\protect\emph{p}-adic repellers in $ {\mathbb{Q}}_{p}$ are subshifts of finite type}, journal = {Comptes Rendus. Math\'ematique}, pages = {219--224}, publisher = {Elsevier}, volume = {344}, number = {4}, year = {2007}, doi = {10.1016/j.crma.2006.12.007}, language = {en}, }
TY - JOUR AU - Aihua Fan AU - Lingmin Liao AU - Yue Fei Wang AU - Dan Zhou TI - p-adic repellers in $ {\mathbb{Q}}_{p}$ are subshifts of finite type JO - Comptes Rendus. Mathématique PY - 2007 SP - 219 EP - 224 VL - 344 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2006.12.007 LA - en ID - CRMATH_2007__344_4_219_0 ER -
Aihua Fan; Lingmin Liao; Yue Fei Wang; Dan Zhou. p-adic repellers in $ {\mathbb{Q}}_{p}$ are subshifts of finite type. Comptes Rendus. Mathématique, Volume 344 (2007) no. 4, pp. 219-224. doi : 10.1016/j.crma.2006.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.12.007/
[1] An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995
[2] Ultrametric Calculus, Cambridge University Press, 1984
[3] p-adic chaos and random number generation, Experiment Math., Volume 7 (1998) no. 4, pp. 333-342
Cited by Sources:
Comments - Policy