We introduce here a new finite volume scheme which was developed for the discretization of anisotropic diffusion problems; the originality of this scheme lies in the fact that we are able to prove its convergence under very weak assumptions on the discretization mesh.
On introduit ici un nouveau schéma volumes finis, construit pour la discrétisation de problèmes de diffusion anisotrope sur des maillages généraux ; l'originalité de ce travail réside dans sa preuve de convergence, qui ne nécessite que des hypothèses faibles sur le maillage.
Accepted:
Published online:
Robert Eymard 1; Thierry Gallouët 2; Raphaèle Herbin 2
@article{CRMATH_2007__344_6_403_0, author = {Robert Eymard and Thierry Gallou\"et and Rapha\`ele Herbin}, title = {A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis}, journal = {Comptes Rendus. Math\'ematique}, pages = {403--406}, publisher = {Elsevier}, volume = {344}, number = {6}, year = {2007}, doi = {10.1016/j.crma.2007.01.024}, language = {en}, }
TY - JOUR AU - Robert Eymard AU - Thierry Gallouët AU - Raphaèle Herbin TI - A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis JO - Comptes Rendus. Mathématique PY - 2007 SP - 403 EP - 406 VL - 344 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2007.01.024 LA - en ID - CRMATH_2007__344_6_403_0 ER -
%0 Journal Article %A Robert Eymard %A Thierry Gallouët %A Raphaèle Herbin %T A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis %J Comptes Rendus. Mathématique %D 2007 %P 403-406 %V 344 %N 6 %I Elsevier %R 10.1016/j.crma.2007.01.024 %G en %F CRMATH_2007__344_6_403_0
Robert Eymard; Thierry Gallouët; Raphaèle Herbin. A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. Comptes Rendus. Mathématique, Volume 344 (2007) no. 6, pp. 403-406. doi : 10.1016/j.crma.2007.01.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.01.024/
[1] Discrete Sobolev inequalities and error estimates for finite volume solutions of convection diffusion equations, M2AN Math. Model. Numer. Anal., Volume 35 (2001) no. 4, pp. 767-778
[2] Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem, M2AN Math. Model. Numer. Anal., Volume 33 (1999) no. 3, pp. 493-516
[3] A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, M2AN Math. Model. Numer. Anal., Volume 39 (2005) no. 6, pp. 1203-1249
[4] H-convergence and numerical schemes for elliptic equations, SIAM J. Numer. Anal., Volume 41 (2000) no. 2, pp. 539-562
[5] A cell-centered finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal., Volume 26 (2006) no. 2, pp. 326-353
[6] An error estimate for a finite volume scheme for a diffusion–convection problem on a triangular mesh, Numer. Methods Partial Differential Equations, Volume 11 (1995) no. 2, pp. 165-173
[7] Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 340 (2005) no. 12, pp. 921-926
Cited by Sources:
Comments - Policy