Let be the n-th cyclotomic field with . Let be the ring of integers of and the set of all elements which are sums of squares in . Let be the smallest positive integer m such that every element in is a sum of m squares in . In this Note, we show that unless n is odd and the order of 2 in is odd, in which case .
Soit le n-ième corps cyclotomique, avec , . Soit l'anneau des entiers de et soit le sous-ensemble de formé des éléments qui sont sommes de carrés. Soit le plus petit entier tel que tout élément de soit somme de m carrés d'éléments de . Nous montrons que : si n est divisible par 4 ; (resp. ) si n est impair et si l'ordre de 2 dans le groupe multiplicatif est pair (resp. impair).
Accepted:
Published online:
Chun-Gang Ji 1, 2; Da-Sheng Wei 3
@article{CRMATH_2007__344_7_413_0, author = {Chun-Gang Ji and Da-Sheng Wei}, title = {Sums of integral squares in cyclotomic fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {413--416}, publisher = {Elsevier}, volume = {344}, number = {7}, year = {2007}, doi = {10.1016/j.crma.2007.02.003}, language = {en}, }
Chun-Gang Ji; Da-Sheng Wei. Sums of integral squares in cyclotomic fields. Comptes Rendus. Mathématique, Volume 344 (2007) no. 7, pp. 413-416. doi : 10.1016/j.crma.2007.02.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.02.003/
[1] Exceptional integers of some ternary quadratic forms, Adv. in Math., Volume 45 (1982), pp. 310-318
[2] Sums of three integer squares in complex quadratic fields, Proc. Amer. Math. Soc., Volume 89 (1983), pp. 211-214
[3] Über eine zahlentheoretische Anwendung von Modulfunktionen einer Veränderlichen, Math. Ann., Volume 100 (1928), pp. 411-437
[4] Representations by integral quadratic forms over algebraic number fields, Conference on Quadratic Forms—1976 (Queen's Papers in Pure and Appl. Math.), Volume vol. 46 (1977), pp. 528-537
[5] Sums of three integral squares in cyclotomic fields, Bull. Austral. Math. Soc., Volume 68 (2003), pp. 101-106
[6] Sums of three squares over imaginary quadratic fields, Forum Math., Volume 18 (2006), pp. 585-601
[7] Über die Darstellung total positiver Zahlen des Körpers als Summe von drei Quadraten, Abh. Math. Sem. Hansischen Univ., Volume 14 (1941), pp. 185-191
[8] Représentation de −1 par une somme de carrés dans certains corps locaux et globaux, et dans certains anneaux d'entiers algébriques, C. R. Acad. Sci. Paris Ser. A-B, Volume 271 (1970), p. A1200-A1203
[9] The sum of two squares in a quadratic field, Comm. Algebra, Volume 25 (1997), pp. 177-184
[10] Darstellung total positiver Zahlen durch Quadrate, Math. Z., Volume 11 (1921), pp. 246-275
[11] Sums of mth powers of algebraic integers, Ann. of Math., Volume 46 (1945), pp. 313-339
Cited by Sources:
⁎ This work was partially supported by the Grant No. 10171046 and 10201013 from NNSF of China and Jiangsu planned projects for postdoctoral research funds.
Comments - Policy