[Résultats d'unicité pour des problèmes pseudomonotones avec
We consider a pseudomonotone operator, the model of which is
Nous considérons un opérateur pseudomonotone du type
Accepté le :
Publié le :
Juan Casado-Díaz 1 ; François Murat 2 ; Alessio Porretta 3
@article{CRMATH_2007__344_8_487_0, author = {Juan Casado-D{\'\i}az and Fran\c{c}ois Murat and Alessio Porretta}, title = {Uniqueness results for pseudomonotone problems with $ p>2$}, journal = {Comptes Rendus. Math\'ematique}, pages = {487--492}, publisher = {Elsevier}, volume = {344}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.02.007}, language = {en}, }
TY - JOUR AU - Juan Casado-Díaz AU - François Murat AU - Alessio Porretta TI - Uniqueness results for pseudomonotone problems with $ p>2$ JO - Comptes Rendus. Mathématique PY - 2007 SP - 487 EP - 492 VL - 344 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2007.02.007 LA - en ID - CRMATH_2007__344_8_487_0 ER -
Juan Casado-Díaz; François Murat; Alessio Porretta. Uniqueness results for pseudomonotone problems with $ p>2$. Comptes Rendus. Mathématique, Volume 344 (2007) no. 8, pp. 487-492. doi : 10.1016/j.crma.2007.02.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.02.007/
[1] Sur une classe de problèmes paraboliques quasilinéaires, Boll. Un. Mat. Ital., Volume 5 (1986), pp. 51-70
[2] Unicité de la solution de certaines équations elliptiques non linéaires, C. R. Acad. Sci. Paris, Volume 315 (1992) no. I, pp. 1159-1164
[3] Quelques propriétés des opérateurs elliptiques quasi linéaires, C. R. Acad. Sci. Paris, Volume 307 (1988) no. I, pp. 749-752
[4] Unicité des solutions du type Kruskov pour des problèmes elliptiques avec des termes de transport non linéaires, C. R. Acad. Sci. Paris, Volume 303 (1986) no. I, pp. 189-192
[5] On some elliptic equations involving derivatives of the nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, Volume 100 (1985), pp. 281-294
[6] Minimal and maximal solutions for Dirichlet pseudomonotone problems, Nonlinear Anal., Volume 43 (2001), pp. 277-291
[7] The capacity for pseudomonotone operators, Potential Anal., Volume 14 (2001), pp. 73-91
[8] Existence and comparison of maximal and minimal solutions for pseudomonotone elliptic problems in
[9] Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities, Ann. Sc. Norm. Sup. Pisa, Volume 16 (1989), pp. 137-166
[10] Quelques résultats de Vi
[11] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969
[12] The Lewy–Stampacchia inequality for bilateral problems, Ricerche Mat., Volume 53 (2004), pp. 139-182
[13] Uniqueness of solutions for some nonlinear Dirichlet problems, Nonlinear Differential Equations Appl. (NoDEA), Volume 11 (2004), pp. 407-430
- Semilinear problems with right-hand sides singular at
which change sign, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 38 (2021) no. 3, pp. 877-909 | DOI:10.1016/j.anihpc.2020.09.001 | Zbl:1466.35111 - Uniqueness results for strongly monotone operators related to Gauss measure, Israel Journal of Mathematics, Volume 233 (2019) no. 1, pp. 297-310 | DOI:10.1007/s11856-019-1901-7 | Zbl:1444.35060
- Uniqueness for elliptic problems with locally Lipschitz continuous dependence on the solution, Journal of Differential Equations, Volume 262 (2017) no. 3, pp. 1777-1798 | DOI:10.1016/j.jde.2016.10.029 | Zbl:1364.35093
- A hybrid high-order method for Leray-Lions elliptic equations on general meshes, Mathematics of Computation, Volume 86 (2017) no. 307, pp. 2159-2191 | DOI:10.1090/mcom/3180 | Zbl:1364.65224
- Interior gradient estimates for quasilinear elliptic equations, Calculus of Variations and Partial Differential Equations, Volume 55 (2016) no. 3, p. 33 (Id/No 59) | DOI:10.1007/s00526-016-0996-5 | Zbl:1347.35123
- The obstacle problem for the porous medium equation, Mathematische Annalen, Volume 363 (2015) no. 1-2, pp. 455-499 | DOI:10.1007/s00208-015-1174-3 | Zbl:1331.35206
- A remark on uniqueness of weak solutions for some classes of parabolic problems, Ricerche di Matematica, Volume 63 (2014), p. s143-s155 | DOI:10.1007/s11587-014-0210-z | Zbl:1304.35018
- Uniqueness results for nonlinear elliptic problems with two lower order terms, Bulletin des Sciences Mathématiques, Volume 137 (2013) no. 2, p. 107 | DOI:10.1016/j.bulsci.2012.03.004
- Uniqueness for elliptic problems with Hölder–type dependence on the solution, Communications on Pure and Applied Analysis, Volume 12 (2012) no. 4, p. 1569 | DOI:10.3934/cpaa.2013.12.1569
- Comparison principle for some classes of nonlinear elliptic equations, Journal of Differential Equations, Volume 249 (2010) no. 12, pp. 3279-3290 | DOI:10.1016/j.jde.2010.07.030 | Zbl:1205.35105
- Existence and comparison results for non-uniformly parabolic problems, Mediterranean Journal of Mathematics, Volume 7 (2010) no. 3, pp. 323-340 | DOI:10.1007/s00009-010-0066-8 | Zbl:1204.35062
- Existence results for nonlinear elliptic problems with unbounded coefficients, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 71 (2009) no. 1-2, pp. 72-87 | DOI:10.1016/j.na.2008.10.047 | Zbl:1171.35379
Cité par 12 documents. Sources : Crossref, zbMATH
Commentaires - Politique