We study the flow map associated to the cubic, defocusing, Schrödinger equation in space dimension at least three. We consider initial data of arbitrary size in , where , the critical index, and perturbations in , where is independent of s. We show an instability mechanism in some Sobolev spaces of order smaller than s. The analysis relies on two features of super-critical geometric optics: the creation of oscillation, and the ghost effect.
Nous étudions l'équation de Schrödinger cubique défocalisante en dimension d'espace au moins trois. Pour des données initiales de taille quelconque dans , , où est l'indice critique, nous considérons des perturbations dans , avec indépendant de s. On montre une instabilité dans des espaces de Sobolev d'ordre inférieur à s. La preuve repose sur une analyse de type optique géométrique en régime sur-critique.
Accepted:
Published online:
Rémi Carles 1
@article{CRMATH_2007__344_8_483_0, author = {R\'emi Carles}, title = {On instability for the cubic nonlinear {Schr\"odinger} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {483--486}, publisher = {Elsevier}, volume = {344}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.03.006}, language = {en}, }
Rémi Carles. On instability for the cubic nonlinear Schrödinger equation. Comptes Rendus. Mathématique, Volume 344 (2007) no. 8, pp. 483-486. doi : 10.1016/j.crma.2007.03.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.03.006/
[1] Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. École Norm. Sup. (4), Volume 38 (2005) no. 2, pp. 255-301
[2] Geometric optics and instability for semi-classical Schrödinger equations, Arch. Ration. Mech. Anal., Volume 183 (2007) no. 3, pp. 525-553
[3] The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal. TMA, Volume 14 (1990), pp. 807-836
[4] M. Christ, J. Colliander, T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, in press. See also | arXiv
[5] Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc., Volume 126 (1998) no. 2, pp. 523-530
[6] Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: examination by asymptotic analysis and numerical computation of the Boltzmann equation, Phys. Fluids, Volume 8 (1996) no. 2, pp. 628-638
Cited by Sources:
Comments - Policy