Comptes Rendus
Theory of Signals
Estimating the probability law of the codelength as a function of the approximation error in image compression
Comptes Rendus. Mathématique, Volume 344 (2007) no. 9, pp. 607-610.

After recalling the subject of the compression of images using a projection onto a polyhedral set (which generalizes the compression by coordinate quantization), we express, in this framework, the probability that an image is coded with K coefficients as an explicit function of the approximation error.

Après des rappels sur la compression d'images par une projection sur un polyèdre, nous explicitons, dans ce cadre, la probabilité qu'une image soit codée par K coefficients, comme une fonction de l'erreur d'approximation.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.03.007

François Malgouyres 1

1 LAGA/L2TI, université Paris 13, 99, avenue Jean-Baptiste-Clément, 93430 Villetaneuse, France
@article{CRMATH_2007__344_9_607_0,
     author = {Fran\c{c}ois Malgouyres},
     title = {Estimating the probability law of the codelength as a function of the approximation error in image compression},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {607--610},
     publisher = {Elsevier},
     volume = {344},
     number = {9},
     year = {2007},
     doi = {10.1016/j.crma.2007.03.007},
     language = {en},
}
TY  - JOUR
AU  - François Malgouyres
TI  - Estimating the probability law of the codelength as a function of the approximation error in image compression
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 607
EP  - 610
VL  - 344
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2007.03.007
LA  - en
ID  - CRMATH_2007__344_9_607_0
ER  - 
%0 Journal Article
%A François Malgouyres
%T Estimating the probability law of the codelength as a function of the approximation error in image compression
%J Comptes Rendus. Mathématique
%D 2007
%P 607-610
%V 344
%N 9
%I Elsevier
%R 10.1016/j.crma.2007.03.007
%G en
%F CRMATH_2007__344_9_607_0
François Malgouyres. Estimating the probability law of the codelength as a function of the approximation error in image compression. Comptes Rendus. Mathématique, Volume 344 (2007) no. 9, pp. 607-610. doi : 10.1016/j.crma.2007.03.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.03.007/

[1] A. Chambolle; R.A. De Vore; N. Lee; B.J. Lucier Nonlinear wavelet image processing: Variational problems, compression and noise removal through wavelet shrinkage, IEEE Transactions on Image Processing, Volume 7 (1998) no. 3, pp. 319-355 (Special Issue on Partial Differential Equations and Geometry-Driven Diffusion in Image Processing and Analysis)

[2] S.S. Chen; D.L. Donoho; M.A. Saunders Atomic decomposition by basis pursuit, SIAM Journal on Scientific Computing, Volume 20 (1999) no. 1, pp. 33-61

[3] A. Cohen; W. Dahmen; I. Daubechies; R. De Vore Harmonic analysis of the space bv, Revista Matematica Iberoamericana, Volume 19 (2003), pp. 235-262

[4] A. Cohen; I. Daubechies; O.G. Guleryus; M.T. Orchard On the importance of combining wavelet-based nonlinear approximation with coding strategies, IEEE Transactions on Information Theory, Volume 48 (July 2002) no. 7, pp. 1895-1921

[5] A. Cohen; R. De Vore; P. Petrushev; H. Xu Nonlinear approximation and the space bv, American Journal of Mathematics, Volume 121 (June 1999) no. 3, pp. 587-628

[6] D. Donoho Compressed sensing, IEEE Transactions on Information Theory, Volume 52 (April 2006) no. 4, pp. 1289-1306

[7] F. Malgouyres Minimizing the total variation under a general convex constraint for image restoration, IEEE Transactions on Image Processing, Volume 11 (December 2002) no. 12, pp. 1450-1456

[8] F. Malgouyres, Image compression through a projection onto a polyhedral set, Technical Report 2004-22, University Paris 13, August 2004

[9] F. Malgouyres, Estimating the probability law of the codelength as a function of the approximation error in image compression, Technical Report ccsd-00108319, CCSD, October 2006

[10] F. Malgouyres, Projecting onto a polytope simplifies data distributions, Technical Report 2006-1, University Paris 13, January 2006

[11] S. Mallat A Wavelet Tour of Signal Processing, Academic Press, Boston, 1998

[12] Y. Meyer Ondelettes et opérateurs, vol. 1, Hermann, 1990

[13] L. Rudin; S. Osher; E. Fatemi Nonlinear total variation based noise removal algorithms, Physica D, Volume 60 (1992), pp. 259-268

Cited by Sources:

Comments - Policy