[Performance moyenne de l'approximation la plus parcimonieuse avec un dictionnaire]
Nous étudions la minimisation du nombre de coefficients non-nuls (la « norme »
We consider the minimization of the number of non-zero coefficients (the
Accepté le :
Publié le :
François Malgouyres 1 ; Mila Nikolova 2
@article{CRMATH_2009__347_9-10_565_0, author = {Fran\c{c}ois Malgouyres and Mila Nikolova}, title = {Average performance of the approximation in a dictionary using an $ {\ell }_{0}$ objective}, journal = {Comptes Rendus. Math\'ematique}, pages = {565--570}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.02.026}, language = {en}, }
TY - JOUR AU - François Malgouyres AU - Mila Nikolova TI - Average performance of the approximation in a dictionary using an $ {\ell }_{0}$ objective JO - Comptes Rendus. Mathématique PY - 2009 SP - 565 EP - 570 VL - 347 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2009.02.026 LA - en ID - CRMATH_2009__347_9-10_565_0 ER -
François Malgouyres; Mila Nikolova. Average performance of the approximation in a dictionary using an $ {\ell }_{0}$ objective. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 565-570. doi : 10.1016/j.crma.2009.02.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.026/
[1] Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. on Information Theory, Volume 52 (2006) no. 2, pp. 489-509
[2] Adaptive greedy approximations, Constructive Approximation, Volume 13 (1997) no. 1, pp. 57-98
[3] Nonlinear approximation, Acta Numerica, Volume 7 (1998), pp. 51-150
[4] Recovery of exact sparse representations in the presence of bounded noise, IEEE Trans. on Information Theory, Volume 51 (2005) no. 10, pp. 3601-3608
[5] Rank related properties for basis pursuit and total variation regularization, Signal Processing, Volume 87 (2007) no. 11, pp. 2695-2707
[6] F. Malgouyres, M. Nikolova, Average performance of the sparsest approximation using a general dictionary, Report HAL-00260707 and CMLA n.2008-08
[7] The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press, 1989
[8] Greed is good: algorithmic results for sparse approximation, IEEE Trans. on Information Theory, Volume 50 (2004) no. 10, pp. 2231-2242
[9] Just relax: convex programming methods for identifying sparse signals in noise, IEEE Trans. on Information Theory, Volume 52 (2006) no. 3, pp. 1030-1051
Cité par Sources :
Commentaires - Politique