[Homogénéisation d'un modèle de convection–diffusion avec réaction en milieu poreux]
On étudie l'homogénéisation d'un problème de convection–diffusion avec réaction en milieu poreux lorsque les nombres de Péclet et de Damkohler sont grands. Nous démontrons que, dans un repère dérivant à grande vitesse, l'équation homogénéisée est une équation de diffusion. Notre méthode est basée sur un principe de factorisation et sur la convergence à deux échelles. La conséquence pratique la plus importante est que nous obtenons ainsi une définition rigoureuse des coefficients homogénéisés qui justife des arguments heuristiques utilisés dans la méthode de la prise de moyenne. Nous avons effectué des calculs numériques en 2-d du coefficient homogénéisé de diffusion–dispersion qui donnent des valeurs très semblables à celles obtenues par prise de moyenne.
We study the homogenization of a convection–diffusion equation with reaction in a porous medium when both the Péclet and Damkohler numbers are large. We prove that, up to a large drift, the homogenized equation is a diffusion equation. Our method is based on a factorization principle and two-scale convergence. The main consequence is that we obtain rigorous definitions of homogenized coefficients which justify heuristic arguments in the method of volume averaging. We perform 2-d numerical computations of the diffusion–dispersion homogenized coefficient which are in very good agreement with previous results obtained by the method of volume averaging.
Accepté le :
Publié le :
Grégoire Allaire 1 ; Anne-Lise Raphael 1
@article{CRMATH_2007__344_8_523_0, author = {Gr\'egoire Allaire and Anne-Lise Raphael}, title = {Homogenization of a convection{\textendash}diffusion model with reaction in a porous medium}, journal = {Comptes Rendus. Math\'ematique}, pages = {523--528}, publisher = {Elsevier}, volume = {344}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.03.008}, language = {en}, }
TY - JOUR AU - Grégoire Allaire AU - Anne-Lise Raphael TI - Homogenization of a convection–diffusion model with reaction in a porous medium JO - Comptes Rendus. Mathématique PY - 2007 SP - 523 EP - 528 VL - 344 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2007.03.008 LA - en ID - CRMATH_2007__344_8_523_0 ER -
Grégoire Allaire; Anne-Lise Raphael. Homogenization of a convection–diffusion model with reaction in a porous medium. Comptes Rendus. Mathématique, Volume 344 (2007) no. 8, pp. 523-528. doi : 10.1016/j.crma.2007.03.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.03.008/
[1] Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518
[2] Homogenization of a spectral problem in neutronic multigroup diffusion, Comput. Methods Appl. Mech. Engrg., Volume 187 (2000), pp. 91-117
[3] G. Allaire, A. Raphael, Homogénéisation d'un modèle de convection–diffusion avec chimie/absorption en milieu poreux, rapport interne n. 604, CMAP, Ecole Polytechnique, 2006
[4] Éléments de comparaison entre la méthode d'homogénéisation et la méthode de prise de moyenne avec fermeture, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, Volume 306 (1988) no. 7, pp. 463-466
[5] Dispersion resulting from flow through spatially periodic porous media. II. Surface and intraparticle transport, Philos. Trans. Roy. Soc. London Ser. A, Volume 307 (1982) no. 1498, pp. 149-200
[6] Homogenization of a neutronic multigroup evolution model, Asymptotic Anal., Volume 24 (2000) no. 2, pp. 143-165
[7] Homogenization of a diffusion with drift, C. R. Acad. Sci. Paris, Sér. I, Volume 327 (1998), pp. 807-812
[8] Homogenization of a neutronic critical diffusion problem with drift, Proc. Roy. Soc. Edinburgh Sect. A, Volume 132 (2002) no. 3, pp. 567-594
[9] F. Hecht, O. Pironneau, A. Le Hyaric, K. Ohtsuka, Freefem++, Version 2.0–0, http://www.freefem.org//ff++, Laboratoire Jacques Louis Lions, Université Pierre et Marie Curie, Paris
[10] Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, 1994
[11] Convection of microstructure and related problems, SIAM J. Appl. Math., Volume 45 (1985) no. 5, pp. 780-797
[12] Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena, Phys. Rep., Volume 314 (1999) no. 4–5, pp. 237-574
[13] Homogenization of a nonlinear convection–diffusion equation with rapidly oscillating coefficients and strong convection, J. London Math. Soc. (2), Volume 72 (2005) no. 2, pp. 391-409
[14] Dispersion, convection, and reaction in porous media, Phys. Fluids A, Volume 3 (May 1991) no. 5
[15] A. Mikelic, V. Devigne, C.J. van Duijn, Rigorous upscaling of the reactive flow through a pore, under dominant Peclet and Damkohler numbers, preprint
[16] A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., Volume 20 (1989) no. 3, pp. 608-623
[17] The Method of Volume Averaging, Theory Applications of Transport in Porous Media, vol. 13, Kluwer Academic Publishers, 1999
Cité par Sources :
Commentaires - Politique