Comptes Rendus
Mathematical Problems in Mechanics
Homogenization of a convection–diffusion model with reaction in a porous medium
[Homogénéisation d'un modèle de convection–diffusion avec réaction en milieu poreux]
Comptes Rendus. Mathématique, Volume 344 (2007) no. 8, pp. 523-528.

On étudie l'homogénéisation d'un problème de convection–diffusion avec réaction en milieu poreux lorsque les nombres de Péclet et de Damkohler sont grands. Nous démontrons que, dans un repère dérivant à grande vitesse, l'équation homogénéisée est une équation de diffusion. Notre méthode est basée sur un principe de factorisation et sur la convergence à deux échelles. La conséquence pratique la plus importante est que nous obtenons ainsi une définition rigoureuse des coefficients homogénéisés qui justife des arguments heuristiques utilisés dans la méthode de la prise de moyenne. Nous avons effectué des calculs numériques en 2-d du coefficient homogénéisé de diffusion–dispersion qui donnent des valeurs très semblables à celles obtenues par prise de moyenne.

We study the homogenization of a convection–diffusion equation with reaction in a porous medium when both the Péclet and Damkohler numbers are large. We prove that, up to a large drift, the homogenized equation is a diffusion equation. Our method is based on a factorization principle and two-scale convergence. The main consequence is that we obtain rigorous definitions of homogenized coefficients which justify heuristic arguments in the method of volume averaging. We perform 2-d numerical computations of the diffusion–dispersion homogenized coefficient which are in very good agreement with previous results obtained by the method of volume averaging.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.03.008

Grégoire Allaire 1 ; Anne-Lise Raphael 1

1 Centre de mathématiques appliquées, École polytechnique, 91128 Palaiseau cedex, France
@article{CRMATH_2007__344_8_523_0,
     author = {Gr\'egoire Allaire and Anne-Lise Raphael},
     title = {Homogenization of a convection{\textendash}diffusion model with reaction in a porous medium},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {523--528},
     publisher = {Elsevier},
     volume = {344},
     number = {8},
     year = {2007},
     doi = {10.1016/j.crma.2007.03.008},
     language = {en},
}
TY  - JOUR
AU  - Grégoire Allaire
AU  - Anne-Lise Raphael
TI  - Homogenization of a convection–diffusion model with reaction in a porous medium
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 523
EP  - 528
VL  - 344
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2007.03.008
LA  - en
ID  - CRMATH_2007__344_8_523_0
ER  - 
%0 Journal Article
%A Grégoire Allaire
%A Anne-Lise Raphael
%T Homogenization of a convection–diffusion model with reaction in a porous medium
%J Comptes Rendus. Mathématique
%D 2007
%P 523-528
%V 344
%N 8
%I Elsevier
%R 10.1016/j.crma.2007.03.008
%G en
%F CRMATH_2007__344_8_523_0
Grégoire Allaire; Anne-Lise Raphael. Homogenization of a convection–diffusion model with reaction in a porous medium. Comptes Rendus. Mathématique, Volume 344 (2007) no. 8, pp. 523-528. doi : 10.1016/j.crma.2007.03.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.03.008/

[1] G. Allaire Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518

[2] G. Allaire; Y. Capdeboscq Homogenization of a spectral problem in neutronic multigroup diffusion, Comput. Methods Appl. Mech. Engrg., Volume 187 (2000), pp. 91-117

[3] G. Allaire, A. Raphael, Homogénéisation d'un modèle de convection–diffusion avec chimie/absorption en milieu poreux, rapport interne n. 604, CMAP, Ecole Polytechnique, 2006

[4] A. Bourgeat; M. Quintard; S. Whitaker Éléments de comparaison entre la méthode d'homogénéisation et la méthode de prise de moyenne avec fermeture, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, Volume 306 (1988) no. 7, pp. 463-466

[5] H. Brenner; P. Adler Dispersion resulting from flow through spatially periodic porous media. II. Surface and intraparticle transport, Philos. Trans. Roy. Soc. London Ser. A, Volume 307 (1982) no. 1498, pp. 149-200

[6] Y. Capdeboscq Homogenization of a neutronic multigroup evolution model, Asymptotic Anal., Volume 24 (2000) no. 2, pp. 143-165

[7] Y. Capdeboscq Homogenization of a diffusion with drift, C. R. Acad. Sci. Paris, Sér. I, Volume 327 (1998), pp. 807-812

[8] Y. Capdeboscq Homogenization of a neutronic critical diffusion problem with drift, Proc. Roy. Soc. Edinburgh Sect. A, Volume 132 (2002) no. 3, pp. 567-594

[9] F. Hecht, O. Pironneau, A. Le Hyaric, K. Ohtsuka, Freefem++, Version 2.0–0, http://www.freefem.org//ff++, Laboratoire Jacques Louis Lions, Université Pierre et Marie Curie, Paris

[10] V.V. Jikov; S.M. Kozlov; O.A. Oleinik Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, 1994

[11] D. McLaughlin; G. Papanicolaou; O. Pironneau Convection of microstructure and related problems, SIAM J. Appl. Math., Volume 45 (1985) no. 5, pp. 780-797

[12] A. Majda; P. Kramer Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena, Phys. Rep., Volume 314 (1999) no. 4–5, pp. 237-574

[13] E. Marušić-Paloka; A. Piatnitski Homogenization of a nonlinear convection–diffusion equation with rapidly oscillating coefficients and strong convection, J. London Math. Soc. (2), Volume 72 (2005) no. 2, pp. 391-409

[14] R. Mauri Dispersion, convection, and reaction in porous media, Phys. Fluids A, Volume 3 (May 1991) no. 5

[15] A. Mikelic, V. Devigne, C.J. van Duijn, Rigorous upscaling of the reactive flow through a pore, under dominant Peclet and Damkohler numbers, preprint

[16] G. Nguetseng A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., Volume 20 (1989) no. 3, pp. 608-623

[17] S. Whitaker The Method of Volume Averaging, Theory Applications of Transport in Porous Media, vol. 13, Kluwer Academic Publishers, 1999

  • Francisco J. Valdés-Parada; Didier Lasseux Clarifications about upscaling diffusion with heterogeneous reaction in porous media, Acta Mechanica, Volume 236 (2025) no. 3, p. 1697 | DOI:10.1007/s00707-024-04214-4
  • Kyle Pietrzyk The Method of Finite Averages: A rigorous upscaling methodology for heterogeneous porous media, Advances in Water Resources, Volume 188 (2024), p. 104689 | DOI:10.1016/j.advwatres.2024.104689
  • Mina Karimi; Kaushik Bhattacharya Accelerated computational micromechanics for solute transport in porous media, Computer Methods in Applied Mechanics and Engineering, Volume 426 (2024), p. 116976 | DOI:10.1016/j.cma.2024.116976
  • Mina Karimi; Kaushik Bhattacharya A Learning‐Based Multiscale Model for Reactive Flow in Porous Media, Water Resources Research, Volume 60 (2024) no. 9 | DOI:10.1029/2023wr036303
  • Julia Orlik; Viacheslav Khilkov; Stefan Rief; Heiko Andrä Homogenization based heating control for moist paperboard with evaporation on the pore surface, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 104 (2024) no. 3 | DOI:10.1002/zamm.202300673
  • M. K. Bourbatache; O. Millet; C. Moyne Upscaling coupled heterogeneous diffusion reaction equations in porous media, Acta Mechanica, Volume 234 (2023) no. 6, p. 2293 | DOI:10.1007/s00707-023-03501-w
  • Tien Dung Le; Christian Moyne; Mohamed Khaled Bourbatache; Olivier Millet Upscaled model for the diffusion/heterogeneous reaction in porous media: Boundary layer problem, Advances in Water Resources, Volume 179 (2023), p. 104500 | DOI:10.1016/j.advwatres.2023.104500
  • Agnese Marcato; Javier E. Santos; Gianluca Boccardo; Hari Viswanathan; Daniele Marchisio; Maša Prodanović Prediction of local concentration fields in porous media with chemical reaction using a multi scale convolutional neural network, Chemical Engineering Journal, Volume 455 (2023), p. 140367 | DOI:10.1016/j.cej.2022.140367
  • Wenjia Jing; Yiping Zhang On the Periodic Homogenization of Elliptic Equations in Nondivergence Form with Large Drifts, Multiscale Modeling Simulation, Volume 21 (2023) no. 4, p. 1486 | DOI:10.1137/23m1550906
  • M. T. van Rossem; S. Wilks; P. R. Secor; M. Kaczmarek; G. D’Alessandro Homogenization modelling of antibiotic diffusion and adsorption in viral liquid crystals, Royal Society Open Science, Volume 10 (2023) no. 1 | DOI:10.1098/rsos.221120
  • Matteo Icardi; Nicodemo Di Pasquale; Eleonora Crevacore; Daniele Marchisio; Matthaus U. Babler Population Balance Models for Particulate Flows in Porous Media: Breakage and Shear-Induced Events, Transport in Porous Media, Volume 146 (2023) no. 1-2, p. 197 | DOI:10.1007/s11242-022-01793-5
  • Kyle Pietrzyk; Ilenia Battiato Automated Symbolic Upscaling: 1. Model Generation for Extended Applicability Regimes, Water Resources Research, Volume 59 (2023) no. 7 | DOI:10.1029/2022wr033600
  • Tien Dung Le; Christian Moyne; Khaled Bourbatache; Olivier Millet A spectral approach for homogenization of diffusion and heterogeneous reaction in porous media, Applied Mathematical Modelling, Volume 104 (2022), p. 666 | DOI:10.1016/j.apm.2021.12.017
  • Mohamed Khaled Bourbatache; Olivier Millet; Tien Dung Le; Christian Moyne Homogenized model for diffusion and heterogeneous reaction in porous media: Numerical study and validation., Applied Mathematical Modelling, Volume 111 (2022), p. 486 | DOI:10.1016/j.apm.2022.07.001
  • Ludovic Gil; Michel Jabbour; Nicolas Triantafyllidis The Role of the Relative Fluid Velocity in an Objective Continuum Theory of Finite Strain Poroelasticity, Journal of Elasticity, Volume 150 (2022) no. 1, p. 151 | DOI:10.1007/s10659-022-09903-6
  • Maria van Rossem; Sandra Wilks; Malgosia Kaczmarek; Patrick R. Secor; Giampaolo D’Alessandro; Isaac Klapper Modelling of filamentous phage-induced antibiotic tolerance of P. aeruginosa, PLOS ONE, Volume 17 (2022) no. 4, p. e0261482 | DOI:10.1371/journal.pone.0261482
  • George F. Price; Igor L. Chernyavsky; Oliver E. Jensen Advection-dominated transport past isolated disordered sinks: stepping beyond homogenization, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 478 (2022) no. 2262 | DOI:10.1098/rspa.2022.0032
  • Kyle Pietrzyk; Svyatoslav Korneev; Morad Behandish; Ilenia Battiato Upscaling and Automation: Pushing the Boundaries of Multiscale Modeling through Symbolic Computing, Transport in Porous Media, Volume 140 (2021) no. 1, p. 313 | DOI:10.1007/s11242-021-01628-9
  • Mohamed Khaled Bourbatache; Tien Dung Le; Olivier Millet; Christian Moyne Limits of Classical Homogenization Procedure for Coupled Diffusion-Heterogeneous Reaction Processes in Porous Media, Transport in Porous Media, Volume 140 (2021) no. 2, p. 437 | DOI:10.1007/s11242-021-01683-2
  • M. K. Bourbatache; O. Millet; C. Moyne Upscaling diffusion–reaction in porous media, Acta Mechanica, Volume 231 (2020) no. 5, p. 2011 | DOI:10.1007/s00707-020-02631-9
  • Federico Municchi; Matteo Icardi Macroscopic models for filtration and heterogeneous reactions in porous media, Advances in Water Resources, Volume 141 (2020), p. 103605 | DOI:10.1016/j.advwatres.2020.103605
  • Oleg Iliev; Andro Mikelić; Torben Prill; Arsha Sherly Homogenization approach to the upscaling of a reactive flow through particulate filters with wall integrated catalyst, Advances in Water Resources, Volume 146 (2020), p. 103779 | DOI:10.1016/j.advwatres.2020.103779
  • Yves Capdeboscq; Timo Sprekeler; Endre Süli Finite element approximation of elliptic homogenization problems in nondivergence-form, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 54 (2020) no. 4, p. 1221 | DOI:10.1051/m2an/2019093
  • A. Piatnitski; E. Zhizhina Homogenization of biased convolution type operators, Asymptotic Analysis, Volume 115 (2019) no. 3-4, p. 241 | DOI:10.3233/asy-191533
  • Matteo Icardi; Gianluca Boccardo; Marco Dentz Upscaling Flow and Transport Processes, Flowing Matter (2019), p. 137 | DOI:10.1007/978-3-030-23370-9_5
  • Claude Le Bris; Frédéric Legoll; François Madiot Multiscale Finite Element Methods for Advection-Dominated Problems in Perforated Domains, Multiscale Modeling Simulation, Volume 17 (2019) no. 2, p. 773 | DOI:10.1137/17m1152048
  • Jean-Francis Bloch; Jean-Louis Auriault Upscaling of Diffusion–Reaction Phenomena by Homogenisation Technique: Possible Appearance of Morphogenesis, Transport in Porous Media, Volume 127 (2019) no. 1, p. 191 | DOI:10.1007/s11242-018-1187-y
  • Igor Pažanin; Marcone C. Pereira On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption, Communications on Pure Applied Analysis, Volume 17 (2018) no. 2, p. 579 | DOI:10.3934/cpaa.2018031
  • Gianluca Boccardo; Eleonora Crevacore; Rajandrea Sethi; Matteo Icardi A robust upscaling of the effective particle deposition rate in porous media, Journal of Contaminant Hydrology, Volume 212 (2018), p. 3 | DOI:10.1016/j.jconhyd.2017.09.002
  • Viet-Thanh To; Vincent Monchiet; Quy Dong To An FFT method for the computation of thermal diffusivity of porous periodic media, Acta Mechanica, Volume 228 (2017) no. 9, p. 3019 | DOI:10.1007/s00707-017-1885-5
  • Guglielmo Scovazzi; Mary F. Wheeler; Andro Mikelić; Sanghyun Lee Analytical and variational numerical methods for unstable miscible displacement flows in porous media, Journal of Computational Physics, Volume 335 (2017), p. 444 | DOI:10.1016/j.jcp.2017.01.021
  • A. Abdulle; M. E. Huber Numerical homogenization method for parabolic advection–diffusion multiscale problems with large compressible flows, Numerische Mathematik, Volume 136 (2017) no. 3, p. 603 | DOI:10.1007/s00211-016-0854-6
  • Thomas Holding; Harsha Hutridurga; Jeffrey Rauch Convergence Along Mean Flows, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 1, p. 222 | DOI:10.1137/16m1068657
  • Gérard Gagneux; Olivier Millet A survey on properties of Nernst–Planck–Poisson system. Application to ionic transport in porous media, Applied Mathematical Modelling, Volume 40 (2016) no. 2, p. 846 | DOI:10.1016/j.apm.2015.06.013
  • Patrick Henning; Mario Ohlberger A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift, Discrete and Continuous Dynamical Systems - Series S, Volume 9 (2016) no. 5, p. 1393 | DOI:10.3934/dcdss.2016056
  • Harsha Hutridurga; Grégoire Allaire On the homogenization of multicomponent transport, Discrete and Continuous Dynamical Systems - Series B, Volume 20 (2015) no. 8, p. 2527 | DOI:10.3934/dcdsb.2015.20.2527
  • Franck Ouaki; Grégoire Allaire; Sylvain Desroziers; Guillaume Enchéry A priori error estimate of a multiscale finite element method for transport modeling, SeMA Journal, Volume 67 (2015) no. 1, p. 1 | DOI:10.1007/s40324-014-0023-8
  • A. Piatnitski; A. Rybalko; V. Rybalko Ground states of singularly perturbed convection-diffusion equation with oscillating coefficients, ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 4, p. 1059 | DOI:10.1051/cocv/2014007
  • A. Abdulle; M. E. Huber Discontinuous Galerkin finite element heterogeneous multiscale method for advection–diffusion problems with multiple scales, Numerische Mathematik, Volume 126 (2014) no. 4, p. 589 | DOI:10.1007/s00211-013-0578-9
  • Yohan Davit; Christopher G. Bell; Helen M. Byrne; Lloyd A.C. Chapman; Laura S. Kimpton; Georgina E. Lang; Katherine H.L. Leonard; James M. Oliver; Natalie C. Pearson; Rebecca J. Shipley; Sarah L. Waters; Jonathan P. Whiteley; Brian D. Wood; Michel Quintard Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?, Advances in Water Resources, Volume 62 (2013), p. 178 | DOI:10.1016/j.advwatres.2013.09.006
  • G. Allaire; I. Pankratova; A. Piatnitski Homogenization and concentration for a diffusion equation with large convection in a bounded domain, Journal of Functional Analysis, Volume 262 (2012) no. 1, p. 300 | DOI:10.1016/j.jfa.2011.09.014
  • G. Allaire; I. Pankratova; A. Piatnitski Homogenization of a nonstationary convection-diffusion equation in a thin rod and in a layer, SeMA Journal, Volume 58 (2012) no. 1, p. 53 | DOI:10.1007/bf03322605
  • ANDRO MIKELIĆ; C. J. VAN DUIJN RIGOROUS DERIVATION OF A HYPERBOLIC MODEL FOR TAYLOR DISPERSION, Mathematical Models and Methods in Applied Sciences, Volume 21 (2011) no. 05, p. 1095 | DOI:10.1142/s0218202510005264
  • Iryna Pankratova; Andrey Piatnitski Homogenization of convection-diffusion equation in infinite cylinder, Networks Heterogeneous Media, Volume 6 (2011) no. 1, p. 111 | DOI:10.3934/nhm.2011.6.111
  • Benoît Perthame; Panagiotis E. Souganidis A homogenization approach to flashing ratchets, Nonlinear Differential Equations and Applications NoDEA, Volume 18 (2011) no. 1, p. 45 | DOI:10.1007/s00030-010-0083-0
  • Igor L. Chernyavsky; Lopa Leach; Ian L. Dryden; Oliver E. Jensen Transport in the placenta: homogenizing haemodynamics in a disordered medium, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 369 (2011) no. 1954, p. 4162 | DOI:10.1098/rsta.2011.0170
  • Grégoire Allaire; Andrey Piatnitski Homogenization of nonlinear reaction-diffusion equation with a large reaction term, ANNALI DELL'UNIVERSITA' DI FERRARA, Volume 56 (2010) no. 1, p. 141 | DOI:10.1007/s11565-010-0095-z
  • Grégoire Allaire; Robert Brizzi; Andro Mikelić; Andrey Piatnitski Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media, Chemical Engineering Science, Volume 65 (2010) no. 7, p. 2292 | DOI:10.1016/j.ces.2009.09.010
  • Patrick Henning; Mario Ohlberger The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift, Networks Heterogeneous Media, Volume 5 (2010) no. 4, p. 711 | DOI:10.3934/nhm.2010.5.711
  • Grégoire Allaire; Andro Mikelić; Andrey Piatnitski Homogenization Approach to the Dispersion Theory for Reactive Transport through Porous Media, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 1, p. 125 | DOI:10.1137/090754935
  • Panagiotis E. Souganidis; Benoît Perthame Asymmetric potentials and motor effect: a homogenization approach, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 26 (2009) no. 6, p. 2055 | DOI:10.1016/j.anihpc.2008.10.003
  • C.J. van Duijn; Andro Mikelić; I.S. Pop; Carole Rosier Chapter 1 Effective Dispersion Equations for Reactive Flows with Dominant Péclet and Damkohler Numbers, Advances in Chemical Engineering - Mathematics in Chemical Kinetics and Engineering, Volume 34 (2008), p. 1 | DOI:10.1016/s0065-2377(08)00001-x
  • Catherine Choquet; Andro Mikelić Laplace transform approach to the rigorous upscaling of the infinite adsorption rate reactive flow under dominant Peclet number through a pore, Applicable Analysis, Volume 87 (2008) no. 12, p. 1373 | DOI:10.1080/00036810802140699

Cité par 53 documents. Sources : Crossref

Commentaires - Politique