In this Note we deal with the asymptotic behavior as t tends to infinity of solutions for linear parabolic equations whose model is
Dans cette Note nous traitons le comportement asymptotique, quand t tend vers l'infini, des solutions des équations paraboliques linéaires dont le modéle est :
Published online:
Francesco Petitta 1
@article{CRMATH_2007__344_9_571_0, author = {Francesco Petitta}, title = {Asymptotic behavior of solutions for linear parabolic equations with general measure data}, journal = {Comptes Rendus. Math\'ematique}, pages = {571--576}, publisher = {Elsevier}, volume = {344}, number = {9}, year = {2007}, doi = {10.1016/j.crma.2007.03.021}, language = {en}, }
Francesco Petitta. Asymptotic behavior of solutions for linear parabolic equations with general measure data. Comptes Rendus. Mathématique, Volume 344 (2007) no. 9, pp. 571-576. doi : 10.1016/j.crma.2007.03.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.03.021/
[1] Asymptotic behavior as of solutions of linear parabolic equations with discontinuous coefficients in a bounded domain, Comm. Partial Differential Equations, Volume 4 (1979) no. 7, pp. 769-794
[2] Nonlinear parabolic equations with measure data, J. Funct. Anal., Volume 147 (1997) no. 1, pp. 237-258
[3] Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 28 (1999), pp. 741-808
[4] Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964
[5] Linear and Quasilinear Parabolic Equations, Academic Press, 1970
[6] Asymptotic behavior of solutions for parabolic equations with natural growth term and irregular data, Asymptotic Anal., Volume 48 (2006) no. 3, pp. 219-233
[7] F. Petitta, Asymptotic behavior of solutions for parabolic operators of Leray–Lions type and measure data, in press
[8] F. Petitta, Renormalized solutions of nonlinear parabolic equations with general measure data, in press
[9] Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. (IV), Volume 177 (1999), pp. 143-172
[10] Existence and uniqueness of entropy solutions of parabolic problems with data, Nonlinear Anal. TMA, Volume 28 (1997), pp. 1943-1954
[11] Convergence de solutions d'équations d'évolution, Rome, 1978, Pitagora, Bologna (1979), pp. 311-327
[12] Le problème de Dirichlet pour les équations elliptiques du seconde ordre à coefficientes discontinus, Ann. Inst. Fourier (Grenoble), Volume 15 (1965), pp. 189-258
[13] On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., Volume 20 (1967), pp. 721-747
Cited by Sources:
Comments - Policy